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Abstract

In school choice, policymakers consolidate a district’s objectives for a school into a priority

ordering over students. They then face a trade-off between respecting these priorities and as-

signing students to more-preferred schools. However, because priorities are the amalgamation

of multiple policy goals, some may be more flexible than others. This paper introduces a model

that distinguishes between two types of priority: a between-group priority that ranks groups

of students and must be respected, and a within-group priority for efficiently allocating seats

within each group. The solution I introduce, the unified core, integrates both types. I provide

a two-stage algorithm, the DA-TTC, that implements the unified core and generalizes both the

Deferred Acceptance and Top Trading Cycles algorithms. This approach provides a method for

improving efficiency in school choice while honoring policymakers’ objectives.

1 Introduction

School choice programs1 allocate school seats using priorities (such as sibling status or proxim-

ity): when a school is oversubscribed, these priorities determine which students are admitted.

The interpretation of these priorities is fundamental to the program’s design, and there are two

leading interpretations. The stronger interpretation posits that priorities are the right to attend

the school ahead of those with lower priorities. In the weaker interpretation, priorities reflect

“better opportunities” to attend a school, all else equal (Abdulkadiroğlu and Sönmez, 2003).

These interpretations underpin the central trade-off in school choice between fairness and ef-

ficiency. Fairness means no student is denied admission to a school in favor of a lower-priority

student; efficiency means students are assigned to schools in such a way that no student can be

1What economists refer to as school choice—the ability to choose between public schools—is frequently called “open

enrollment” in the media. Although, in common parlance, “school choice” refers to voucher or tax credit programs for

defraying the costs of private schooling or homeschooling, I will use the standard language in economics.

1
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improved without harming another student. By requiring the stronger interpretation, the de-

signer arrives at a fair match because no student prefers a school that a lower-priority student is

assigned to. However, allowing for the weaker interpretation shifts the set of permissible assign-

ments to include an efficient match. The main dilemma is that no algorithm delivers a match that

is both fair and efficient.

Despite the appeal of efficiency, policymakers consistently choose fairness.2 Empirically, the

cost is substantial: for instance, Abdulkadiroğlu, Pathak and Roth (2009) finds that the assign-

ments of 4300 eighth-grade students in New York City could have been improved without harm-

ing any other students. In response to this, recent research focuses on weaker versions of fairness

to allow for efficiency gains.

However, an examination of why policymakers side with fairness reveals that they are fre-

quently concerned with the violations of some priorities but not with others. For instance, a pri-

ority derived from a high test score may have a stronger interpretation than a priority assigned

based on proximity to the school. Because economists have not considered how policymakers

may treat some priorities differently than others, this omission has precluded a promising ap-

proach to reconciling fairness and efficiency. The key to understanding how policymakers view

priorities lies in the two-step process that is typically used to construct priorities.

In the first step, the policymaker identifies a set of student characteristics to prioritize and

uses these characteristics to partition students into priority groups.3 Then, the policymaker as-

signs a priority over the priority groups that reflects the policymaker’s objectives for the school;

this is the between-group priority. In the second step, within each group, another within-group

priority is provided to break ties, which could depend upon other student characteristics or

a random lottery. A student’s priority at a school is lexicographically determined first by her

between-group priority and then by her within-group priority.

Policymakers understand that because priorities arise from different sources, they require

different interpretations. Allocating a seat to a student in a lower priority group ahead of a

student in a higher priority group may be unacceptable, but assignments within groups may be

more subtle. The prominent case of Boston Public Schools (BPS)—the first district to carefully

consider its assignment mechanism—illustrates this difference.

BPS created two priority groups: students with a sibling attending the school and all other

2New Orleans Recovery School District and the Common App is the only example I know of that sought an efficient

outcome in some rounds of the assignment process, but this was abandoned after the first year.
3For example, these characteristics frequently include whether the student has a sibling attending the school, whether

the student is within a particular geographic region, the student’s test scores, etc., and a priority group consists of the

students with the same set of characteristics.
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students, with the former given higher between-group priority than the latter. Within each prior-

ity group, BPS gave higher within-group priority to students residing in the school’s walk zone,

and broke any remaining ties with a random lottery. When comparing the efficient algorithm

with the fair algorithm, Superintendent Payzant implies that the between-priority derived from

having a sibling present should be treated differently from the within-priorities:

[The efficient system] presents the opportunity for the priority of one student at a

given school to be “traded” for the priority of a student at another school, [. . . ] There

may be advantages to this approach, [. . . ] It may be argued, however, that certain

priorities – e.g., sibling priority – apply only to students for particular schools and

should not be traded away. (Abdulkadiroğlu et al., 2006)

The implication from his silence concerning walk-zone priority is that, in some cases, walk zone

priorities could be traded away. Sibling priority has the stronger interpretation while walk zone

priority has the weaker interpretation of a better opportunity to attend the school.4

Despite the different interpretation of priorities within these two steps, economists usually

remain agnostic about the source of the priority. The nuances between priority groups are dis-

missed, and all priorities are treated equally. The existing options afforded to policymakers do not

allow them to express these nuances. This leaves policymakers in a quandary because a more ef-

ficient match is better than not, but violating the stronger priorities may be impermissible. When

BPS faced this decision, they erred on the side of respecting priorities and implemented the fair

mechanism even though only a subset of their priorities required the stronger interpretation.

In this paper, I introduce a model that explicitly distinguishes between two types of priority—

between-group and within-group—and I propose the unified core to connect the two. In my

model, each school’s priority consists of two layers. The first layer is the between-group priority,

a weak preference that specifies which students belong to which priority group and how those

groups are ordered. The second layer is the within-group priority, a strict preference that refines

the between-group priority.5 Accordingly, only the between-group priority is interpreted as a

4Readers familiar with this story will note that my exposition of the priority groups is slightly different than that of

Abdulkadiroğlu et al. (2006). Formally, BPS designated five priority groups: continuing students, sibling-walk, sibling,

walk, and all others. However, as Payzant’s quote illustrates, sibling priority and walk zone priority are normatively

different. Conveniently, the order on the priority groups allows for walk zone priority to be viewed as a tiebreaker

within the sibling priority group. If BPS ranked these groups differently, my model would not apply directly. For ease of

exposition, I exclude the continuing students from the model; continuing students can be easily added to the model by

including an additional priority group.
5In most applications, the within-group priority consists of a random lottery. However, I refrain from referring to it

as a tiebreaker because the within-group priority may include substantive components, such as geographic location (as in
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right to attend the school ahead of lower-priority students, and it cannot be violated. On the

other hand, the within-group priority has the milder interpretation of an opportunity to attend

the school; it is a means of allocating the school seat, but it is not inviolable. The interpretation of

the within-group priority is weak enough to guarantee efficiency within a group while still using

the priority to allocate the seat.

The unified core connects the two cores that underlie the fair and efficient algorithms, and is

implemented by carefully combining the algorithms that implement the fair and efficient cores.

The core underlying the fair algorithm is the fair core of Gale and Shapley (1962) (henceforth

GS), which allows a student to claim a seat at a school if she has a higher priority than a student

currently there. This stems from the strong interpretation of priorities and treats the school as a

strategic player and the priority as the school’s preference. The result is a fair match because any

unfair match can be blocked by the student whose priority is violated.

The core underlying the efficient algorithm is from Rong, Tang and Zhang (2022) (henceforth

RTZ),6 who develop their efficient core to provide a foundation for the use of several efficient

algorithms in school choice. RTZ’s efficient core allows a student to take possession of a school

provided no higher-priority students can veto that action. In effect, the efficient core allows for

a form of tradable priorities, where a low-priority student can receive a priority from another

student so long as no higher-priority students are harmed. As is paralleled in many economic

models, the power to trade freely (in this case, trade school seats) guarantees that an efficient

allocation is reached.

Whether policymakers prefer the outcomes of the fair core or the efficient core ultimately

depends on the source of the students’ priorities. If the priority reflects different priority groups,

then the fair core is appealing; if it reflects within-group tiebreakers such as a random lottery, the

efficient core allows more students to attend the schools that they prefer. However, neither the

fair core nor the efficient core allows for combinations of the two priorities.

The unified core resolves this tension and connects the two cores by allowing the policymaker

to explicitly designate two kinds of priorities. By treating the between-group priorities as in the

fair core while the within-group priorities as in the efficient core, the unified core generalizes both

cores. Students can always claim a seat at a school if they have a higher between-group priority

than a currently assigned student, as in GS. Within-group priorities, however, may be traded

amongst students within the same priority class, as in RTZ. This guarantees a form of “within-

group” efficiency. The way I implement this mirrors RTZ: a student can take a seat provided no

the case of BPS). The emphasis, however, is that these priorities have a weaker interpretation.
6It is worth mentioning here that RTZ’s core identifies precisely the just assignments of Morrill (2015).
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within-group interrupters in her priority group can block her.

The main challenge in crafting a solution for this model is integrating the differing normative

implications of the two priorities. Unlike the model of Erdil and Ergin (2008) (henceforth EE),7

the within-group priorities are not merely random tiebreakers. Within-group priority may en-

code substantive differences (as in the case of BPS) that must be respected, just not in the same

fashion as the between-group priority. The difficulty lies in creating a unified model that allows

for both interpretations, one between groups and the other within groups.

The power of the unified core lies in its ability to interpolate between the frameworks of

GS and RTZ. When the between-group priority is a strict ranking where each student forms a

singleton priority group, the unified core corresponds to the fair core of GS. On the other hand,

when the between-group priority is indifferent over all students (there is a single priority group),

then the unified core corresponds to the efficient core of RTZ. At intermediate stages, the unified

core blends both RTZ and GS in a principled manner.

To make the unified core practical, I introduce a novel two stage algorithm—the DA-TTC

algorithm—that always produces a match in the unified core. In the first stage, I allow students

to freely apply to their most-preferred schools as in the Deferred Acceptance algorithm of GS.

Schools tentatively accept the highest-priority applicants and immediately reject the rest. The

process continues until no more students are rejected, at which point the first stage terminates

and returns the match µ1.

In the second stage, I adapt Gale’s Top Trading Cycles algorithm but with a restriction on

the allowable trades (Shapley and Scarf, 1974). Essentially, students may only trade their seats

(that they have from µ1) to other students in the same priority group. I iteratively find groups of

students who can, by trading their assigned schools among themselves, be matched to their most-

preferred school out of the ones currently available. This algorithm is the crux of this paper, and

is presented in Section 3.2. I label the resulting match µ2. Once all students have been removed,

the second stage terminates and returns the match µ2.

My main result establishes that µ2 belongs to the unified core. The advantage of my approach

is a practical algorithm to finding an element of the unified core. The DA-TTC is also computa-

tionally feasible.8

A key advantage of the unified core in applications is the simplicity of its definition.9 First,

7I discuss the differences in models in Section 1.1, and the differences in our techniques in Section 4. In short, EE

uses only between-group priorities; however, I must use more care because of the within-group priorities. This prevents

a direct application of the Stable Improvement Cycles algorithm.
8It runs in polynomial time.
9Indeed, Payzant expressed reservation concerning the TTC because of the complexity of the algorithm. I return to
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there are no between-group priority violations, so the fairness property of the fair core is pre-

served. However, when there is a within-group priority violation, the explanation is straight-

forward: rectifying the violation would harm a student with higher within-group priority. By

focusing on a reasonable outcome, the definition of the unified core lends itself to applications in

school choice.

The rest of this paper is structured as follows. First, I close out this section with a discussion

of the relevant papers, emphasizing the differences between the unified core, related concepts,

and the methods used. Section 2 introduces the model, the bulk of which is devoted to the

distinction between within-group and between-group priorities. In Section 3, I develop my main

result (Theorem 1) which shows that a match in the unified core can always be found using an

efficient algorithm. I conclude in Section 4 with a discussion of the result and further avenues of

research.

1.1 Related Literature

This paper connects several strands of research.

First, as mentioned previously, the model in this paper has substantial overlap with Erdil and

Ergin (2008) (henceforth, EE). The key difference between my model and EE’s model is that I

include the within-group priorities in the model primitives, while they take these priorities as

randomly generated from the between-group priorities. Although mathematically similar, be-

cause the within-group priorities may carry normative implications, the outcomes in the unified

core are restricted. In EE, any student within the same priority group can be assigned to the

school so long as the match is Pareto optimal among the matches that are stable with respect to

the between-group priorities. In contrast, in the unified core, a student of higher within-group

priority can claim a seat so long as no higher priority students in the same group are harmed.

The within-group priority disciplines how seats are allocated within priority groups.

Second, ever since Abdulkadiroğlu and Sönmez (2003), researchers have been trying to mod-

ify the Deferred Acceptance algorithm to accommodate efficiency gains (Ehlers and Morrill, 2020;

Kesten, 2010; Troyan, Delacrétaz and Kloosterman, 2020; Reny, 2022). These approaches, how-

ever, take the priorities as given and weaken the definition of the core. The unified core comple-

ments this approach by weakening the priorities and then adapting the core to this framework.

The upshot of the unified core is that the definition of the core is simpler, but the downside is

that the preferences must have a two-stage structure to make any efficiency gains.

Third, a separate approach has been to provide foundations for the use of the Top Trading Cy-

this topic in the discussion.
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cles algorithm in school choice (Abdulkadiroğlu and Che, 2010; Morrill, 2013; Abdulkadiroğlu

et al., 2017; Chen, Chen and Hsu, 2021; Rong, Tang and Zhang, 2022; Dur and Paiement, 2024).

These axiomatic definitions ground this work, and I extend our understanding of these mecha-

nisms by integrating them into the fairness framework of GS.

The paper closest in spirit to mine is Abdulkadiroğlu (2011). The main difference between his

paper and mine is the restriction they place on between-priorities: in their model, between-group

priorities either express indifference or a strict preference over all students. Additionally, his

focus is on student optimality rather than on the core. He uses the within-priorities in a similar

way, but only in his algorithm; the unified core provides the underpinnings for his solution.

2 Model

In this section I present the formal model of a school choice problem and my key definitions. In the

first subsection, I introduce the standard primitives, except that I replace a school’s one priority

with two priorities: the between-group priority and within-group priority. In the second subsec-

tion, I develop the theory of the unified core. In the third subsection, I turn to the solutions of

GS, RTZ, and EE, and highlight the differences and advantages of the unified core.

2.1 The Primitives

There is a finite set of students I and a finite set of schools S, collectively called agents. Each school

has a capacity qs ≥ 1 of seats. A match is a function µ : I → I∪S with the following two properties:

1. if i ∈ I , then µ(i) ∈ S ∪ {i}; and

2. if s ∈ S, then |µ−1(s)| ≤ qs.

The first requirement guarantees that the market is two-sided: students are matched to schools

or unmatched (this is denoted as being matched to oneself). The second requirement guarantees

that capacities are not exceeded.

Every student has a strict preference ≻i over S ∪ {i}; the associated weak preference is ≿i . A

match µ is individually rational if for every i ∈ I , µ(i) ≿i i. When considering a set of students

A ⊆ I , I say that A prefers ν to µ if for every i ∈ A, ν(i) ≿i µ(i) and the comparison is strict for some

student in A.

Schools, however, come equipped with two orders over I , the between-group priority and the
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within-group priority.10 The between-group priority order is a weak preference ≿s.11 It represents

the priorities that require the stronger interpretation as a right to attend the school ahead of

others. When ≿s does not rank two students strictly, it means that they are in the same priority

group. Formally, denote the priority group of student i at s as

[a]s ≡ {j ∈ I : j ∼s i}

The within-group priority order is a strict preference ≻∗s. It represents the priorities that are

allowed the weaker interpretation of a better opportunity to attend the school. In practice, the

priority that a policymaker uses is the lexicographic combination of ≿s and ≻∗s: first, ≿s is used

to partition students into groups, and then ≻∗s is used to break ties within groups. Rather than

define a combined priority, I assume that ≻∗s is a refinement of ≿s; that is, if a ≻s b, then a ≻∗s b.

That is, ≻∗s is what most researchers refer to as school priority, whereas for me it is the result of

the policymaker breaking ties within priority groups.

Because this model is many-to-one, it is necessary to construct the school’s between-group

priority over groups of students.12 Toward this end, I make the standard assumption that the

school’s between-group priority over groups of students is responsive (Roth, 1985). In words, this

means that for equally-sized groups, the first has greater between-group priority than the second

if every student in the first can be paired with a student in the second such that the first has

greater between-group priority. For unevenly sized groups, the smaller group never has greater

between-group priority than the larger group, but the larger group has greater between-group

priority if there is a subset of the larger group that is the same size as the smaller group and has

greater between-group priority.

Formally, I construct ≿s for groups of students in the following way. For A,A′ ⊆ I such that

|A| = |A′ |, I write A ≿s A
′ if the students in A and A′ can be indexed such that a1 ≿s a

′
1, a2 ≿s a

′
2, . . . ,

a|A| ≿s a
′
|A|. When A ≿s A

′ and A′ ≿s A, I write A ∼s A′ .13 If A ≿s A′ but not A′ ≿s A, then I write

A ≻s A′ . When |A| , |A′ |, I write A ≿s A
′ if |A| > |A′ | and there is some Ã ⊆ A′ such that Ã ≿s A′ .

2.2 Unified Core

With the primitives in hand, I turn to a discussion of the core of the model. As introduced earlier,

policymakers view between-group and within-group priorities differently. To accommodate both

10Implicit here is the assumption that every student is acceptable to every school. Extending this model to incorporate

unacceptable students is straightforward, but adds unnecessary notation.
11The irreflexive portion is ≻s (the strict preference relation) and the reflexive portion is ∼s (the indifference relation).
12Extending the within-group priority in a similar manner is unnecessary in my analysis.
13Note that ≿s may not be a complete relation over groups of students: there are some coalitions A and A′ such that

neither A ≿s A′ nor A′ ≿s A.
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types of priorities, I introduce two separate types of blocks. In both cases the conditions on

student preferences are the same: the coalition of students must prefer the new match to the old

one. What changes is the definition of what the coalition can enforce.

The between-group priorities resemble the preferences in the GS two-sided model. However,

within my framework I focus on students as the active players. To accommodate this, Definition 1

allows a student to block a match if her between-group priority has been violated. This definition

mirrors the standard blocking definition of GS. It rules out any violations of the between-group

priority order.

Definition 1. The coalition A can between-group enforce match ν over match µ if for every i ∈ A,

either there is a student j ∈ µ−1(ν(i)) such that i ≻s j or |µ−1(ν(i))| < qν(i).14

The definition of blocking is standard: a coalition can between-group block match µ if it can

between-group enforce some match ν that the coalition prefers to µ. Note that if a match is

not individually rational, then it is between-group blocked by some student who wishes to be

unmatched.

Between-group blocks are useful in school choice models, but do not fully model the priorities

given by schools. As seen in EE, using between-group blocks alone can provide substantial wel-

fare improvements for students. However, the within-priorities may also carry normative value

as Payzant implied. To address this, I turn to a treatment of within-group priorities.

The within-group priorities are modeled as in the RTZ framework. In their model, a coalition

of students can enforce a match to some schools only if no group of students outside the coalition

could veto such a match by asserting their stronger claims. I import this definition into my model

by restricting attention only to students within the same priority group. To formalize this, I first

define the within-group upper contour set:

Us(i) = {j ∈ [i]s : j ≿∗s i}

In words, j is in Us(i) if j has a higher within-group priority at s. When considering whether i

can claim a seat at s, Us(i) are the students who could prevent this match because they have a

stronger within-group claim to s. For example, suppose qs = 1; if i wishes to match to s, then i

must guarantee that students in Us(i) are not harmed by this action. I call students in Us(i) but

not in A the within-group interrupters of i. A sufficient condition is that there are no within-group

interrupters. When qs > 1, it is not necessary to eliminate every within-group interrupter: if n

14Traditionally in GS-style models, the schools are included in the coalition; however, in RTZ-style models (see next

paragraph), this is not the case. I present this student-only version for use here. The downside is that the definition of

enforcement relies on µ; the upside is fewer cases in the definition of the unified core.



2 Model 10

students from A match to s, then qs − n within-group interrupters do not need to be included

because the within-group interrupters (even when acting together) are unable to prevent the

coalition members from claiming their seats at the school.15 Definition 2 formalizes this intuition.

Definition 2. A coalition A ⊆ I can within-group enforce match ν over match µ if for every school

s ∈ ν(A), the following two conditions hold:

1. ν−1(s) ∼s µ−1(s)

2. the sum of the number of within-group interrupters across all students in A that are matched

to s is less than or equal to qs − |ν−1(s)|.

Again, the definition of blocking is symmetric: a coalition can within-group block match µ if it

can within-group enforce some match ν that the coalition prefers to µ.

The main difference between within-group blocks and between-group blocks is their treat-

ment of schools. Schools must strictly benefit (according to the between-priority) from between-

group blocks, but may be indifferent in a within-group block. The within-group block compen-

sates by placing a stronger condition upon the student coalition.

With both types of blocks in hand, I turn to defining the unified core in definition 3.

Definition 3. µ is in the unified core if it is neither between-group blocked nor within-group

blocked.

In Section 3, I provide a two-stage algorithm that always finds a match in the unified core.

Before introducing the algorithm, I first discuss the two most-closely related solutions.

2.3 Comparison with Related Models

In this subsection, I briefly introduce the models of GS and RTZ.

In the fairness framework of GS, a match µ is fair if there is no student i and s such that s ≻i µ(i)

and either there is a j ∈ µ−1(s) such that i ≻∗s j or |µ−1(s)| < qs. Note that when the between-group

priority orders all students strictly, then the set of fair matches and the unified core are the same.

In contrast, the efficiency framework of RTZ uses priorities to allocate school seats as if they

were objects. The within-group priority represents a form of ownership of the school and allows

for a form of trading. The key difference between the efficient core and the unified core is that the

15The reader may wonder why I (and RTZ) include this slackness in the definition of enforceability. Without it, a stu-

dent with top priority might trade multiple seats away. The intuition is that, if every within-group interrupter is included,

then including the highest-priority student might necessitate (through a chain of enforceability claims) including two or

more lower-priority students who are matched to the school. An example demonstrating this is available upon request.
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efficient core assumes that there is a single priority group: any group of students can use their

priorities to trade their schools. This is made by a slight change in definitions: the efficient upper

contour set is

U ∗s (i) = {j ∈ I : j ≻∗s i}

and for a coalition A and match ν, the efficient interrupters of i ∈ A are the students in U ∗ν(i)(i) but

not A. The definition of efficient enforcement is then the same as within-group enforcement except

that the condition ν−1(s) ∼s µ−1(s) is dropped and the efficient interrupters are counted instead

of within-group interrupters. The definition of efficient blocking and the efficient core is similar.

When the between-group priority places all students within the same priority group, the efficient

core and the unified core are the same.

The power of the unified core is its ability to interpolate between the efficient and fair cores.

By allowing for the between-group priority to range between a strict ranking of all students and

complete indifference, the unified core captures the nuances of policymakers’ objectives and the

two-stage nature of priorities. In example 1, I show how the unified core models what the fair

and efficient cores cannot.

Example 1. Consider a school choice problem with six students and six schools, each school

having one seat. The students’ preferences and the schools’ between- and within-priority orders

are as follows (unlisted preferences/priorities are irrelevant):

≻1 ≻2 ≻3 ≻1′ ≻2′ ≻3′

a b a a′ b′ a′

b a c b′ a′ c′

... ... ... ... ... ...

≻a ≻b ≻c ≻a′ ≻b′ ≻c′

1,2,3 1,2 3 2′ 1′ 3′

... ... ... 3′ 2′ ...

1′ ...

...

≻∗a ≻∗b ≻∗c ≻∗a′ ≻∗b′ ≻∗c′

2 1 3 2′ 1′ 3′

3 2 ... 3′ 2′ ...

1 ... 1′ ...

... ...

Notice that this example consists of two parallel problems side-by-side. In the first, the students

1 and 2 are the highest-priority students at the school the other most-prefers (schools a and b,

respectively), and in the second, students 1′ and 2′ are the highest-priority at the school the other



3 Analysis 12

most-prefers (schools a′ and b′ , respectively). The fair core is the match:

µGS =

1 2 3 1′ 2′ 3′

b a c b′ a′ c′


The fair core does not incorporate the difference between the between-group and within-group

priorities; hence it is less efficient than allowed. However, the efficient core is also unsatisfactory:

µRTZ =

1 2 3 1′ 2′ 3′

a b c a′ b′ c′


The difficulty with RTZ is that it does not recognize that student 3′ can claim a seat at school a′

ahead of student 1′ .

The unified core, however, correctly identifies the difference between these priority groups:

µUC =

1 2 3 1′ 2′ 3′

a b c b′ a′ c′


3 Analysis

In this section, I present my main result (Theorem 1). It states that the unified core is non-empty

for every school choice problem and provides an algorithm for finding one such match.

I use a two-stage algorithm to prove the result. In the first stage, I leverage the Deferred

Acceptance algorithm (DA) to produce a match that is not between-group blocked (Gale and

Shapley, 1962). In the second stage, I build a variation of the Top Trading Cycles algorithm (TTC)

to remove any within-group blocks from the previous match while not adding any between-group

blocks (Shapley and Scarf, 1974). The match produced is in the unified core.

3.1 Removing between-group blocks: The Deferred Acceptance Algorithm

In this subsection, I present the first stage of the DA-TTC: the Deferred Acceptance algorithm

from GS. In the DA, students initially start unmatched. In the first round, students “propose”

to their favorite school. Every school tentatively accepts students up to its capacity (picking the

highest according to its within-group priority) and immediately rejects the rest. In subsequent

rounds, students who are not tentatively accepted propose to their favorite school among those

that have not rejected them. Every school considers the new proposals simultaneously with the

students it has tentatively accepted, and again rejects all but the top students up to its capacity.

This process continues until every student is matched or has been rejected by every acceptable

school. I formally write this in Algorithm 1.



3 Analysis 13

Algorithm 1 Deferred Acceptance Algorithm
every student i points to the ≿i-highest agent

while more than qs students point to some school s do

s rejects all but the ≻∗s-top qs students who proposed to s

every student i points to the ≿i-highest agent who has not rejected him yet

end while

µ1 assigns each student to the agent he last proposed to

The DA was originally designed by GS to construct a fair match. Fairness is a stronger require-

ment than not being between-group blocked, this result applies to my model. Lemma 1 translates

the standard result into my model. The proof is standard and is relegated to the Appendix.

Lemma 1. µ1 is not between-group blocked by any coalition.

3.2 Removing within-group blocks: The Top Trading Cycles Algorithm

In this subsection, I present the second stage of the DA-TTC: the Top Trading Cycles algorithm of

Shapley and Scarf (1974). In the TTC, each student “owns” a seat at the school she is matched to

in µ1. Students are allowed to trade the seats that they own with others, but only within priority

groups.

The way that I implement this is by first restricting which students and schools are active,

and then restrict which schools a student can “point” to. At the start of the TTC, each student

i is active if she is in the lowest priority group of µ1(i) among the students matched to µ1(i) (i.e.

for every j ∈ µ−1
1 (µ1(i)), j ≿µ1(i) i). Throughout the TTC, each school s is active if at least one

student in µ−1
1 (s) is active (at the start of the TTC, every school such that |µ−1

1 (s)| ≥ 1 is active by

construction).

In every round of the TTC, for each student, construct the list of admissible schools. A school s

is admissible to student i if there is some active j ∈ µ−1
1 (s) such that i ∼s j. Each student points to

her most-preferred admissible school, and each active school points to the highest-priority active

student in µ−1
1 (s) (by definition, a school is only active if there is an active student in µ−1

1 (s), so this

is well-defined). Because every active student points to an active school, and every active school

points to an active student, a cycle must form. Every student on the cycle is assigned a seat at the

school she points to and becomes inactive. The process is repeated until no students (and hence

no schools) are active. Algorithm 2 provides the formal definition.

Theorem 1. µ2 is in the unified core.
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Algorithm 2 Top Trading Cycles Algorithm
initialize µ2← µ1

for all i ∈ I do ▷ activates students in the lowest-priority group at their assigned school

initialize i as active if j ≿µ1(i) i for every j ∈ µ−1
1 (µ1(i))

end for

for s ∈ S do

initialize s as active if there is an active student in µ−1
1 (s)

end for

while there is an active student do

for every active student i do ▷ students point to most-preferred admissible school

i points to her ≻i-most preferred active school in {s : exists active j ∈ µ−1
1 (s) s.t. i ∼s j}

end for

each active school points to the highest-priority active student in µ−1
1 (s)

a cycle i1, s1, . . . , in, sn exists

for all 1 ≤ k ≤ n do ▷ removes students in cycle from problem, then restarts

set µ2(ik) to sk

deactivate ik

if there are no active students in µ−1
1 (sk), then deactivate s

end for

end while
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The full proof of Theorem 1 is available in the Appendix. Here, I outline the key points in the

argument. A preliminary step is to show that µ2 is not between-group blocked; given that µ2 is a

Pareto improvement of µ1 for the students but is equivalent under the between-priorities, this is

not difficult to show.16 The rest of the proof supposes that A within-group blocks µ2 with ν, and

then finds a contradiction.

The major difficulty with applying a standard proof that the TTC is in the core is that, for a

school s in ν(A), not every student in ν−1(s) is necessarily in A. Put differently, using the TTC

usually requires a well-defined set of owners, which the unified core lacks. The crux of the proof

is a construction of a bijection Ts between students in ν−1(s)∩A and students in µ−1
2 (s)∩A, which

identifies an owner for each relevant seat. I construct Ts by addressing students in both ν−1(s)∩A

and µ−1
2 (s)∩A separately from those in only ν−1(s)∩A. For those in both, I make Ts the identity

function. For those in only ν−1(s)∩A, I leverage the ν−1(s) ∼s µ−1
2 (s) of within-group enforcement

requirement to find an equally-sized set of students in (µ−1
2 (s)∩A)\ν−1(s). I further show that if i

is active in the TTC, then Tν(i)(i) is also active in the TTC and Tν(i)(i) ∈ Uν(i)(i). Hence, for active

students, the Ts essentially identifies which student owns which seat at s.

With the bijection Ts in hand, I then can use standard methods. I construct a cycle of students

i1, . . . in in A where ν(ik) = µ2(ik+1) as in most proofs involving the TTC. I construct it such that

least one student in this cycle must strictly prefer ν to µ2. But I also show that every ik is active in

the Top Trading Cycles algorithm, so each must be deactivated only after the next student. This

then leads to a situation in which ik must be deactivated strictly before ik is, a contradiction.

4 Discussion

In this section, I place Theorem 1 and the DA-TTC in conversation with existing results and point

toward several avenues for future research. I first compare this result with that of EE, highlighting

the complexities arising from the within-group blocks. I then turn to the question of finding a

constrained efficient match. Finally, I turn to a more general discussion of the DA and TTC in

school choice, and highlight the difficulties present in bridging these two algorithms.

With the proof of the non-emptiness of the unified core in hand, I turn to a discussion of the

differences between the DA-TTC and the Stable Improvement Cycles algorithm (DA-SIC) of EE.

For context, EE considers the matches that are not between-group blocked. The DA-SIC starts

by running the DA using the within-group priorities to establish a baseline match that is not

between-group blocked. The SIC then checks for a cycle of students who each prefer the next

16But the importance of this cannot be overstated; as I discuss in Section 4, having to find a Pareto improvement of µ1

is has restricted the kinds of algorithms available in school choice.
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student’s match such that, if the students exchange seats, no between-group blocks are created;

this is the eponymous stable improvement cycle. The output of the SIC stage is a student-optimal

match among those that are not between-group blocked. The critical difference between the SIC

and the TTC is that the SIC allows for trades across priority groups while the TTC does not. The

following example with three students and two schools (each with one seat) illustrates this:

≻1 ≻2 ≻3

a b a

b a b

≻a ≻b
2 1

1,3 2,3

≻∗a ≻∗b
2 1

3 3

1 2
µDA =

1 2 3

b a 3


At the match µDA, EE identifies a stable improvement cycle of 1 → a and 2 → b. However,

allowing this pair to trade schools violates student 3’s within-priority at both schools: after the

trade, the coalition of {3} can within enforce a match to either a or b. In effect, the stable improve-

ment cycle is stable with respect to ≿, but disregards ≻∗.17 This allows for these trades between

priority groups. This difference is not a mere technical nuance; in the case of BPS, it is precisely

trades like this that concern the policymaker.

Thus far, I have dealt only with existence rather than constrained-efficiency. The major drive

of EE is to find a student-optimal match subject to the stability constraints, which they show

can be found by iteratively eliminating stable improvement cycles. Given the similarity between

the DA-TTC and the DA-SIC, the natural question arises as to whether an analogous method can

be used to eliminate “unified” stable improvement cycles. Unfortunately, this approach seems

doomed to failure. Although for the between-priority the stable improvement cycle can be im-

ported as-is, checking whether a cycle respects within-priority is significantly more complex. The

crux is that a student’s within-priority can be violated when a higher-priority student trades her

seat to a lower-priority agent. However, in a cycle, whether such a “trade” can be found depends

upon the matches of students outside the cycle. Put differently, a stable improvement cycle may

involve trades across priority groups, but then a trade within the priority group must be found

to protect the former trade. The problem is compounded by the possibility that the latter trade

may itself be the result of another simultaneous trade. Whether a constrained efficient match can

be found using this technique or others is an open question.

17There is a second difference between the DA-TTC and the DA-SIC. Consider a school choice problem with one school

(with one seat) and two students, both of whom desire the seat at the school. If the students are in the same priority

group, then the DA-SIC could assign either student to the school. The DA-TTC, however, is constrained to only assign

the higher-priority student. Put differently, the DA-TTC can emulate the TTC because the DA-TTC makes use of the

within-group priority; the DA-SIC cannot.
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There are several open questions about algorithms similar to the DA-TTC. The DA-TTC is a

part of a growing set of algorithms that can be roughly described as “DA baseline, then trade

to improve.” Starting with Abdulkadiroğlu and Sönmez (2003), several authors have used this

formula, such as EE, Kesten (2010), and Doe (2024). The difficulty with combining these two

families of algorithms is maintaining monotonicity on a set of matches. Echenique and Oviedo

(2004) shows how the DA can be viewed as a monotonic function on matches; however, the TTC

does not share this property (Echenique, Goel and Lee, 2024). When combining these two al-

gorithms, care must be taken to guarantee that the trades made in the TTC do not upset the

match found in the DA, which is why the previous papers allow students only to trade the school

they received from the DA rather than any school they have the highest-priority for. Going the

other way around is tougher: if the designer first allows students to trade schools and then at-

tempts to remove fairness violations, a student may trade for a school that is taken away; with

one student-school pair removed from the group of trading students, the outcome of the TTC

shifts unpredictably. The only paper to tackle both simultaneously is Abdulkadiroğlu (2011). Is

this approach to connecting the DA and TTC the only viable option? Can conditions be placed

upon priorities to ameliorate the non-monotonicity of the TTC in the presence of the DA?

Another obstacle to implementing the TTC is the complexity of the algorithm. Payzant alludes

to this; after his previous quote, he continued: “Moreover, Top Trading Cycles is less transparent

– and therefore more difficult to explain to parents – because of the trading feature executed by

the algorithm, which may perpetuate the need or perceived need to ‘game the system.’” Concerns

like Payzant’s have spurred a growing body of literature to understand the complexity of the TTC

(Gonczarowski and Thomas, 2024; Leshno and Lo, 2017). In this paper, I instead focused on

properties of the match rather than the process used to reach the match. The properties of a

match may prove more transparent to stakeholders than the properties of an algorithm.

I close with a brief note about the DA and TTC. Within the literature on school choice, the vast

majority of algorithms stem from the DA and the TTC. The monotonicity of the DA is well-suited

for the lattice structure of the stable matches, and the TTC flexibly handles ownership economies

(Gusfield and Irving, 1989; Papai, 2000). However, as I note in the previous paragraphs, these

algorithms are difficult to combine. Additionally, given the complexity of the TTC and how

few districts have attempted to implement it, relying on TTC-style algorithms to improve the

efficiency of the DA may not be successful in applications. Developing general algorithms—

as in Abdulkadiroğlu (2011)—to probe the efficiency-fairness frontier is a research direction of

primary importance.
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A Omitted Proofs

Lemma A.1. Every student weakly prefers µ1 to being unmatched.

Proof. Observe that no student rejects a proposal from herself (because students do not make

rejections). This implies that no student prefers being unmatched more than µ1.

Proof of Lemma 1:

Suppose (toward a contradiction) that µ1 is between-group blocked by a coalition A between-

enforcing a match ν which it prefers.

First, by lemma A.1, there is some school in µ1(A).

Second, observe that a school only rejects students if it receives more proposals (cumulatively)

than its capacity qs. Therefore, if i strictly prefers a school to µ1(i), then that school is filled to

capacity at µ1.

The previous two points imply the existence of a school s and two students i and j with the

following properties:

1. s ∈ ν(A); and

2. i ∈ A∩ ν−1(s) but i < µ−1
1 (s); and

3. j ∈ µ−1
1 (s) but j < ν−1(s); and

4. i ≻s j.

But then notice that i must have proposed to s but have been rejected. However, j must have

proposed to s but not have been rejected. If j proposed to s before s rejects i, then s rejects j

before rejecting i, a contradiction. If j proposed to s after s rejects i, then s must have rejected i

in favor of a higher within-group priority student i∗; hence, j is also rejected, a contradiction.

Therefore, there is no coalition which between-group blocks µ1.

Lemma A.2. If A ∼s A′ , then for every i ∈ I : |[i]s ∩A| = |[i]s ∩A′ |

Proof. Suppose (toward a contradiction) that for some i ∈ I : |[i]s ∩A| , |[i]s ∩A′ |. Without loss of

generality, let i be in the ≿-highest priority group such that |[i]s ∩A| , |[i]s ∩A′ |. Again, without

loss of generality, let |[i]s∩A| > |[i]s∩A′ |. Consider that A ∼s A′ implies A′ ≿s A. But then A′ and A

cannot be indexed such that a′k ≿s ak because every student in a ≿-more preferred priority group

must be paired with a student in that same priority group and the students in the [i]s priority

group are imbalanced. This is a contradiction.
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Lemma A.3. The following statements are true:

1. If A within-group blocks µ2 by within-enforcing ν, then A within-group blocks µ1 by within-

enforcing ν as well.

2. If A between-group blocks µ2 by between-enforcing ν, then A within-group blocks µ1 by within-

enforcing ν as well.

Proof. I show that A can within-group enforce or between-group enforce ν over µ1 (respectively).

Because every student weakly prefers µ2 to µ1, it follows that A prefers ν to µ1 and hence within-

group blocks or between-group blocks µ1 with ν.

For the first statement, suppose that A within-group blocks µ2 by within-enforcing ν. I show

that A can within-group enforce ν over µ1. To see this, notice that Us(i) is independent of µ2.

Hence, the sum of within-group interrupters across all students in ν−1(s)∩A is the same for both

µ2 and µ1. Additionally, by definition, for every s ∈ ν(A): µ−1
2 (s) ∼s ν−1(s). By the construction of

µ2: µ−1
2 (s) ∼s µ−1

1 (s). Hence, ν(s) ∼s µ−1
1 (s). Therefore, A can within-group enforce ν over µ1.

For the second statement, suppose that A between-group blocks µ2 by within-enforcing ν. I

show that A can between-group enforce ν over µ1. To see this, notice that for every school s,

µ2 ∼s µ1. Hence, if ν−1(s) ≻s µ2, then ν−1(s) ≻s µ1. Therefore, A can between-group enforce ν over

µ1.

This completes the proof.

Lemma A.4. If A within-group blocks µ2 with ν, then i ∈ A strictly prefers ν(i) to µ2(s) only if s is

filled to capacity at µ2.

Proof. Suppose (toward a contradiction) that i ∈ A strictly prefers ν(i) ≡ i to µ2(s) but |µ−1
2 (s)| < qs.

By lemma A.3, A within-group blocks µ1 with ν. By the construction of µ2, |µ−1
2 (s)| = |µ−1

1 (s)|.

By the construction of µ1, s only rejects i if more than |qs | students point to s. But less than qs

other students point at s, so s does not reject i. Therefore, i weakly prefers µ1 to i. This contradicts

that i strictly prefers s to µ2. Therefore, |µ−1
2 (s)| = qs.

Proof of Theorem 1: By lemma A.3, µ2 is not between-group blocked; otherwise, µ1 would be

between blocked, a contradiction to lemma 1.

Now consider within-group blocks. Suppose (toward a contradiction) that µ2 is within-group

blocked by a coalition A within-enforcing a match ν.

First, for every school s ∈ ν(A), I define an injection Ts : ν−1(s)∩A→ µ−1
1 (s)∩A in the following

manner. Let ν−1(s)∩A = {i1, i2, . . . , in} be indexed such that ik+1 ≻∗s ik for every k. Notice that by

the construction of µ1, if ik ∈ µ−1
1 (s), then for k′ > k, ik′ ∈ µ−1

1 (s). Therefore, there is a unique m
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(possibly taking the value of 0 or n) such that im < µ
−1
1 (s) but im+1 ∈ µ−1

1 (s). I define Ts piecewise

based on the index k:

• For m+ 1 ≤ k ≤ n, let Ts(ik) ≡ ik .

Observe that Ts(ik) ∈ µ−1
1 (s) by the definition of m. Notice that Ts(ik) ∈ A because ik ∈ ν−1(i)∩

A. This piece of Ts is clearly injective.

• For 1 ≤ k ≤m, consider the following argument:

Because A within-group enforces ν at µ2, it follows that ν−1(s) ∼s µ−1
2 (s). By construction,

µ−1
1 (s) ∼s µ−1

2 (s). By construction of µ1, every student in µ−1
1 (s) is strictly ≻∗s-preferred to

every student in i1, . . . , im. Hence by lemma A.2, i1, . . . , im ∈ [im]s.

Again, because A within-group enforces ν over µ2, there are at most qs − |ν−1(s)| within-

group interrupters for student im. Because |ν−1(s)| = qs by lemma A.4, it follows that there

are no within-group interrupters of im. Hence, Us(im) ⊆ A. But every student in µ−1
1 (s) is

≻∗s-preferred to im. Thus, µ−1
1 (s)∩ [im]s ⊆Us(im). Therefore, µ−1

1 (s)∩ [im]s ⊆ A.

Finally, note that |µ−1
1 (s)∩ [im]s | = |ν−1(s)∩ [im]s | by lemma A.2. Let M be the greatest index

such that iM ∈ [im]s, and note that {i1, . . . iM } ⊆ ν−1(s)∩ [im]s. But then I have∣∣∣∣µ−1
1 (s)∩ [im]s

∣∣∣∣ ≥ ∣∣∣∣{i1, . . . , im, . . . iM }∣∣∣∣
However, because {im+1, . . . , iM } ⊆ µ−1

1 (s), this can be rewritten:∣∣∣∣(µ−1
1 (s)∩ [im]s

)
\{im+1, . . . , iM }

∣∣∣∣+ ∣∣∣∣{im+1, . . . , iM }
∣∣∣∣ ≥ ∣∣∣∣{i1, . . . , im, . . . iM }∣∣∣∣

This further implies ∣∣∣∣(µ−1
1 (s)∩ [im]s

)
\{im+1, . . . , iM }

∣∣∣∣ ≥ ∣∣∣∣{i1, . . . , im}∣∣∣∣ (1)

Define Ts(ik) as the kth ≻∗s least-preferred student in
(
µ−1

1 (s)∩ [im]s
)
\{im+1, . . . , iM }. By equa-

tion (1), Ts(ik) is well-defined and is an injection on this piece. Because Ts(ik) < {im+1, . . . , iM },

this piece of Ts has no overlap with the first piece. Finally, by the above argument, Ts(ik) ∈ A.

Hence, there is a well-defined injection Ts : ν−1(s)∩A→ µ−1
1 (s)∩A.

Second, iteratively construct the following sequence of students. Let i1 be some student in A

such that ν(i1) , µ2(i1). Because A prefers ν to µ2, such a student exists. Let ik+1 ≡ Tν(ik )(ik).

Third, I claim that ik is well-defined, ik ∈ A, and µ1(ik) , ν(ik). I show this by induction. For

the base case when k = 1, I make three observations:

1. That i1 is well-defined is noted previously.
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2. i1 ∈ A by definition.

3. Because i1 strictly prefers ν(i1) to µ2(i1) and i1 weakly prefers µ2 to µ1 by construction, it

follows that ν(i1) , µ1(i1).

For the inductive step, suppose that every student with index less than k is well-defined, is in A,

and is not matched to the same school in ν and µ1. I make three observations:

1. Note that ν(ik−1) ∈ ν(A). Similarly, note that ν(ik−1) ∈ S because µ2 is individually rational.

Hence, Tν(ik−1) is well-defined. Therefore ik is well-defined.

2. ik ∈ A because the domain of Tν(ik−1) is a subset of A.

3. Because ν(ik−1) , µ2(ik−1) and ik−1 weakly prefers µ2 to µ1, it follows that ν(ik−1) , µ1(ik−1).

Thus, ik−1 < µ
−1
1 (ν(ik−1)). By the construction of Tν(ik−1), it follows that µ1(ik) = ν(ik−1) and

ν(ik) , ν(ik−1). Therefore, µ1(ik) , ν(ik).

Fourth, because each Tν(ik ) is an injection and each student ik is matched to only one school

in µ1, it follows that if ik , il , then Tν(ik ) , Tν(il ). Because there are a finite number of students, it

follows that there is a (minimal) index n such that i1 = in+1.

Fifth, consider the cycle i1, . . . , in. Because Tν(ik−1)(ik−1) , ik , it follows that j ≿µ1(ik ) ik for every

j ∈ µ−1
1 (µ1(ik)). Hence, every student in the cycle is active the Top Trading Cycles stage. Notice

that each ik must be deactivated weakly later than ik+1 because ik points to µ1(ik+1). However, i1

must be deactivated strictly later than i2 because ν(i1) , µ1(i2). Therefore, i1 must be deactivated

strictly before i1, a contradiction.

Therefore, there is no coalition that within-group blocks ν.
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