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Abstract

Typically, matching market models ignore prior commitments. Yet many

job seekers, for example, are already employed. I analyze two-sided match-

ing markets with pre-existing binding agreements between market partici-

pants. In this model, a pair of participants bound to each other by a pre-

existing agreement must agree to any action they take. To analyze their be-

havior, I propose a new solution concept, the agreeable core, consisting of the

matches which cannot be renegotiated without violating the binding agree-

ments. My main contribution is an algorithm that constructs such a match

by a novel combination of the Deferred Acceptance and Top Trading Cy-

cles algorithms. The algorithm is robust to various manipulations and has
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applications to numerous markets including the resident-to-hospital match,

college admissions, school choice, and labor markets.

1 Introduction

In matching markets, pre-existing agreements are common. For example, when a

student is admitted to a college through an Early Decision program, she commits

to attend the college; she is bound to the college, and it now controls her right to

participate in the regular admission cycle. When a professional athlete signs on

to a sports team, that team purchases her right to sign on to other teams. Both

examples include market participants—whether students or athletes—who have

bound themselves to others. They are denied the right to find a new partner

unless they are released from their agreements.

The standard model of matching markets ignores these interdependencies. It

gives participants unrestricted rights to form new agreements, regardless of their

earlier agreements. That is clearly unrealistic.

I propose a new model to solve this problem. It makes it possible to analyze

such markets. At bottom, my model requires that any action taken by one per-

son must receive the approval of the person to whom she is bound. For example,

a professional athlete can only seek another position with the approval of her

team. Without the approval, she faces penalties for breaching her agreement. To

manage these constraints, I introduce the concept of an agreeable group of par-

ticipants. A group is agreeable if no member of the group is bound to someone

outside of the group by a pre-existing agreement. In my example, an agreeable

group only contains the athlete if it also contains her team, and vice versa. Criti-

cally, neither the athlete nor the team needs to be released from an agreement by

anyone outside of the group.

My solution, the agreeable core, consists of the outcomes that cannot be rene-

gotiated by any agreeable group. For a candidate outcome µ, the agreeable core
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considers every agreeable group and checks whether the group can achieve a bet-

ter outcome for its members. If no such agreeable group exists, then the agree-

able core includes µ. In the professional sports example, an agreeable group may

contain some athletes and their respective teams. The agreeable core allows those

athletes and teams to renegotiate their new contracts before they are signed so long

as every member of the group benefits. For example, a team may condition the

release of a player from their pre-existing contract on whether it secures a more-

preferred replacement to sign a new contract. No person outside of this group

can impede the negotiation because the group is agreeable.

Notably, I show that there are only two ways that agreements are dissolved

in the agreeable core (Proposition 3). First, some agreements are dissolved un-

conditionally by both parties, which corresponds to the legal concept of mutual

separation. Both parties are able to find better alternative partners regardless of

the action the other takes. The outcome would be the same with or without the

agreement. For example, this occurs when a team and an athlete jointly agree

to cancel their contract; whether or not the contract initially existed is irrelevant

to their future decisions. Second, the remaining agreements are only dissolved

through “trades,” which correspond to multilateral agreements. In a trade, two

or more participants exchange the partners to whom they bound. For example,

this occurs when two teams trade players. I show that at every outcome in the

agreeable core, every dissolved agreement is of one of these forms.

The main contribution of this paper is a two-stage algorithm, the Propose-

Exchange algorithm (PE), which always produces an outcome in the agreeable

core. The novel feature of the PE is how it leverages Proposition 3 to partition

the participants according to how they dissolve their agreements. The PE uses a

cascading process to determine which agreements can be dissolved uncondition-

ally. Among participants who unconditionally dissolve their agreements, the PE

then uses Deferred Acceptance algorithm (DA) from two-sided matching theory
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to assign a match in the core (Gale and Shapley, 1962). For the participants who

are bound by some agreements, the PE allows participants to trade their partners

as in the Top Trading Cycles algorithm (TTC) from the object allocation literature

(Shapley and Scarf, 1974).

The PE algorithm can replace existing algorithms in markets that suffer from

a lack of participation. Two prominent applications of market design—“The

Match” conducted by the National Resident Matching Program (NRMP) and open-

enrollment programs—are only incomplete markets. In the NRMP, some resi-

dents are offered posts outside of The Match. Prospective residents are forced

to decide between accepting an early offer and participating in The Match. In

open-enrollment programs, students can simultaneously hold offers from both

the school district and private schools, leading to market congestion. Both prob-

lems arise because some agents accept offers through a decentralized system.

The PE algorithm resolves this problem by integrating the centralized market

with the decentralized market. Both the NRMP and open-enrollment programs

use a version of the DA or TTC, so the PE can implement either. Incorporat-

ing the decentralized market is also straightforward: simply take the outcome of

the decentralized market as the set of binding agreements. Because the PE (and

the agreeable core in general) leaves no agent worse off than they are with their

pre-existing binding agreements, the PE encourages agents to participate who

normally would not. Participating in the PE is a weakly dominant strategy for

agents who have created binding agreements in the decentralized market.

Second, the agreeable core provides an explainable solution in matching with

minimum constraints. In some applications agents have minimum quotas that

the designer must respect. In the context of matching residents to hospitals in

Japan, the Japanese government seeks to guarantee that some regions receive a

minimum number of residents (Kojima, Tamura and Yokoo, 2018). In public-

school open-enrollment, the designer may have a preference for maintaining so-
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cioeconomic diversity at the schools; these are frequently written as minimum

constraints assigned to different socioeconomic tiers; see Fragiadakis and Troyan

(2017) for a discussion of these examples. In the United States Military Academy,

cadets are assigned to positions subject to minimum manning constraints (Fra-

giadakis and Troyan, 2017). To accommodate minimum constraints in the agree-

able core, the designer only needs to create artificial binding agreements. For

example, if the designer adds an agreement between a hospital and a resident,

then the hospital is guaranteed to match to (at least one) resident. The agreeable

core provides a robust justification for the outcome: no other outcome could be

reached without violating either agents’ preferences or the minimum constraints.

The results of this paper are grounded in the formalization of binding agree-

ments as an initial match denoted µ0. In this formalization, each participant is

initially matched to at most one other participant. For concreteness, I label one

side workers and the other side firms, and I refer to groups of agents as coalitions.

The initial match rules out any participant being “double-booked;” otherwise,

one participant may be bound to two others, creating ambiguity as to which

agreement has precedence. Similarly, the initial match only allows for binding

agreements to be two-way. For example, this formulation requires that if a stu-

dent is bound to a college, then that college is bound to this student. There are

ways to allow for some types of one-way agreements, but these require modifying

participants’ preferences. In this formalization, agreeable coalitions of agents are

those which only include one participant if and only if her initial match is also a

member of the coalition.

The agreeable core is an entirely different approach compared to previous

research on matching with an initial match. Previous research emphasizes the

properties of specific algorithms, such as strategy-proofness or efficiency (Combe

and Schlegel, 2024; Combe, Tercieux and Terrier, 2022; Guillen and Kesten, 2012;

Hafalir, Kojima and Yenmez, 2023; Hamada et al., 2017). In contrast, this paper
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first develops a solution concept and then constructs an algorithm. The advan-

tage is that the outcome in the agreeable core can be justified without relying

upon the properties of the particular algorithm used to select it. My approach

complements existing research because outcome-oriented solutions (which only

require static definitions) are easier to explain and justify to stakeholders than

algorithmic properties.1 The trade-off is that the PE algorithm does not have the

same incentive properties that are often baked into existing algorithms; however,

I show that the PE satisfies a weakened version of strategy-proofness.

The Propose-Exchange algorithm is novel in its combination of both the De-

ferred Acceptance and Top Trading Cycles algorithms and has no similar pre-

decessors. To the best of my knowledge, the only other algorithm capable of

implementing both the DA and the TTC is the Stable Improvement Cycles algo-

rithm of Abdulkadiroğlu (2011), which operates in a very different fashion. My

use of the DA to divide the matching problem into two is entirely new and has

promising applications in other markets with an initial match.

The rest of the paper proceeds as follows. In Section 2 I motivate the agreeable

core through an illustrative example. Section 3 presents the model. In Section 4 I

present the proof of my main result, the Propose-Exchange algorithm that always

produces a match in the agreeable core. Section 5 contains several results related

to the manipulability of the Propose-Exchange algorithm. I defer a discussion

of the related literature until Section 6, where I discuss how the agreeable core

presents an alternative understanding of several economic applications.

1For example, the statement your child is at highest ranked school you listed where she is above the

school’s cutoff is easier for parents to understand than some axiomatizations of the Deferred Ac-

ceptance, such as we used the only algorithm that satisfies non-wastefulness, population monotonicity,

weak Maskin monotonicity, and mutual best see (Morrill, 2013a). I emphasize that axiomatic ap-

proaches have significant value both in research and practice, but in some applications other

justifications are more helpful.
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2 A Motivating Example

In this section I introduce an example to illustrate my main definitions. This ex-

ample highlights the limitations of the standard solution concept—the core—in

matching markets where an initial match exists (the pre-existing binding agree-

ments). By way of reminder, a match is in the core if no group of agents, known

as a blocking coalition, can strictly improve their outcomes by forming an alterna-

tive match solely among themselves. The core does not account for the binding

agreements and fails to improve upon the initial match.

Example 1. There are four workers (w1, w2, w3, and w4) and four firms (fA, fB,

fC , and fD). All workers prefer fA to fB to fC to fD , except worker w1 who swaps

the order of fA and fB. All firms prefer w3 to w1 to w2 to w4, except for firm fA

who swaps the order of w1 and w2. Worker w1 and firm fA have a contract, as

do worker w2 and firm fB, and also w4 and firm fD . Worker w3 and firm fC do

not have a contract. In the language of my model, these contracts are the initial

match µ0 to which any agent can appeal (the set of pre-existing binding agree-

ments which cannot be dissolved without the agreement both parties). Any out-

come must guarantee that all agents are weakly better off than under the initial

match. The initial match is essential because it limits the participants’ flexibility

in forming new contracts. The preferences are summarized in Figure 1, with the

initial match circled.

Consider the core of this market. At any core outcome, worker w3 must be

matched to firm fA because they mutually rank each other as best; otherwise, the

coalition of {w3, fA} blocks the match. However, this implies that either w1 or w2

is not matched to fA or fB and thus is worse-off than under µ0. This a violation of

the initial match µ0. Therefore there is no match in the core that improves upon

the initial match.

The failure of the core to provide a match that improves upon the initial match
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w1 w2 w3 w4

fB fA fA fA

fA fB fB fB

fC fC fC fC

fD fD fD fD

∅ ∅ ∅ ∅

fA fB fC fD

w3 w3 w3 w3

w2 w1 w1 w1

w1 w2 w2 w2

w4 w4 w4 w4

∅ ∅ ∅ ∅

= initial match µ0

Figure 1: Preferences in Example 1, listed from most to least preferred, with ∅

indicating a preference for remaining unmatched; for example, this first column

reads w1 strictly prefers fB to fA to fC to fD to being unmatched. The circles

indicate the initial match µ0; for example, w1 is initially matched (that is, under

contract) to fA.

arises from the blocking coalitions allowed. Allowing every subset of agents to

block is too permissive and ignores the initial match µ0. The core is usually jus-

tified by arguing that agents in a blocking coalition could form contracts among

only themselves, which allows for coalitions such as {w3, fA}.

Although the core is unsatisfactory, there are two Pareto improvements of

the initial match, indicated in Figure 2. In both, w1 is matched to fB and w2 is

matched to fA. The first Pareto improvement, labeled µ̄, matches w3 to fC and w4

to fD . Every blocking coalition contains {w3, fA} or {w3, fB} because no firm wants

w4 more than its partner in µ̄, and both w1 and w2 are matched to their most-

preferred partners. Consider {w3, fA} first. Bothw3 and fA prefer each other to the
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proposed match µ̄. But would worker w1 release fA from her contract to go and

match to w3? Worker w1’s release of fA is contingent upon w1 signing a contract

with fB, but fB has the same constraint: w2 must be induced to release fB, which

cannot be done without guaranteeing that w2 matches to fA. But the premise of

this blocking coalition is that fA will match to w3 instead of w2, so w2 would not

consent to this plan. In the language of my model, the coalition {w3, fA} is not

agreeable and thus cannot renegotiate its contracts; a similar argument follows

for the coalition {w3, fB}.

The story is different for the other Pareto improvement, labeled µ̇. In this

match, w3 is matched to fD and w4 to fC . Here, the coalition {w3, fC} blocks the

match. Because neither w3 nor fC is under contract, no agent can prevent them

from renegotiating a new match. This coalition qualifies as agreeable. The agree-

able core intuitively selects the first match but not the second.

To illustrate the mechanics of the Propose-Exchange algorithm, the follow-

ing steps outline how tentative matches are proposed and refined until no fur-

ther improvements can be made. To compute the first Pareto improvement ( µ̄

), I leverage the Propose-Exchange algorithm. In this example the Propose stage

takes worker w3, who is initially unmatched, declares him “active.” The Propose

stage allows active workers to make proposals to their favorite firm which has not

rejected them so far. In the first step, both w3 proposes to fA, who tentatively ac-

cepts him. Because fA receives a proposal she prefers to her initial worker w1, w1

is now declared “active” as well. This guarantees that every firm weakly prefers

the outcome of the Propose stage to the initial match µ0 because she only releases

her initial worker once she has a more-preferred tentative match. In the second

step, w1 proposes to fB, who tentatively accepts w1. Again, because fB receives a

proposal she prefers to her initial worker w2, w2 is now declared “active.” In the

third step, w2 proposes to fA, who rejects him. In the fourth step, w2 proposes

to his initial firm fB; the Propose stage requires that fB accept w2’s proposal and
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w1 w2 w3 w4

fB fA fA fA

fA fB fB fB

fC fC fC fC

fD fD fD fD

∅ ∅ ∅ ∅

fA fB fC fD

w3 w3 w3 w3

w2 w1 w1 w1

w1 w2 w2 w2

w4 w4 w4 w4

∅ ∅ ∅ ∅

(a) First Pareto Improvement, µ̄

w1 w2 w3 w4

fB fA fA fA

fA fB fB fB

fC fC fC fC

fD fD fD fD

∅ ∅ ∅ ∅

fA fB fC fD

w3 w3 w3 w3

w2 w1 w1 w1

w1 w2 w2 w2

w4 w4 w4 w4

∅ ∅ ∅ ∅

(b) Second Pareto improvement, µ̇

Figure 2: Pareto improvements of µ0.

Note: throughout I use solid lines to denote the initial match and dashed

lines to denote possible other matches
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reject w1. This guarantees that every worker weakly prefers the outcome of the

Propose stage to the initial match µ0. Continuing in this fashion, w1 proposes to

his initial firm f1, which causes w3 to be rejected. Worker w3 proposes to fB and

is rejected, and then to fC and is tentatively accepted. These steps are visualized

in Figure 3. The outcome of the Propose stage is denoted µ1 and is depicted in

panel (h). However, an agreeable blocking coalition still exists because workers

w1 and w2 would prefer to exchange their initial firms fA and fB, and these firms

also would prefer the exchange.

The Exchange stage modifies the outcome of the Propose stage to remove the

agreeable blocking coalition {w1,w2, fA, fB} of µ1. In the Exchange stage, workers

w1, w2, and w4 and firms fA, fB, and fD are active because they have not improved

their initial match through the Propose stage, while w3 and f3 are inactive. In the

first step, w1 points to fB because fB is w1’s most-preferred firm. Again, w2 points

to fA because fA is w2’s most-preferred active firm. Worker w4 would point to

either fA or fB, but neither prefer him to their initial match, so w4 is only allowed

to point to his own firm fD . This will guarantee that every firm weakly prefers

the outcome of the Exchange stage to the initial match µ0. Each active firm points

to her initial worker. The cycle w1→ fB→ w2→ fA→ w1 forms, and w1 and w2

are both permanently matched to the firms they point at. The cycle w4→ fD also

forms, and w4 is permanently matched to fD . The output is µ2, which is depicted

in Figure 4. As expected, µ2 is the first Pareto improvement that was discussed,

the unique element of the agreeable core.

The Propose-Exchange algorithm involves both a “free market” phase in the

Propose stage (but with participation restrictions on w1, w2, and w4) as well as a

“trading” phase in which could w1, w2, and w4 exchanged their firm. The match

at every stage of the Propose-Exchange algorithm is an improvement of the initial

match.
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fAw1

fBw2

fCw3

fDw4

(a) Step 1

fAw1

fBw2

fCw3

fDw4

(b) Step 2

fAw1

fBw2

fCw3

fDw4

(c) Step 3

fAw1

fBw2

fCw3

fDw4

(d) Step 4

fAw1

fBw2

fCw3

fDw4

(e) Step 5

fAw1

fBw2

fCw3

fDw4

(f) Step 6

fAw1

fBw2

fCw3

fDw4

(g) Step 7

fAw1

fBw2

fCw3

fDw4

(h) Output µ1

Figure 3: A visualization of the steps of the Propose stage. The black dashed

lines indicate active proposals, and the light gray dashed lines indicate rejected

proposals. Note that w1 and w2 only make proposals after fA and fB have each

received a proposal, respectively. Worker w4 never makes a proposal because fD

never receives a proposal.
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fAw1

fBw2

fCw3

fDw4

(a) µ0 (solid), µ1 (dashed)

fAw1

fBw2

fCw3

fDw4

(b) Step 1

fAw1

fBw2

fCw3

fDw4

(c) Output µ2

Figure 4: A visualization of the steps of the Exchange stage. Agents w3 and fC are

excluded because their µ0- and µ1-partners differ. There is only one step because

each active agent is in a cycle in Step 1.

3 Model

In this section I present a one-to-one matching model. Although many of my

applications are many-to-one (e.g. many students match to one school), I defer a

discussion of the nuances until Section 6. In most examples, the many-to-one case

is a simple extension of the one-to-one model. Below I introduce the elements of

a matching problem, which is a tuple (W,F,≻,µ0) consisting of workers, firms, a

profile of preferences, and an initial match.

There is a set of workersW and the set of firms F, and the union of both is the

set of agents A ≡ W ∪ F. For clarity of exposition I use masculine pronouns for

workers and feminine pronouns for firms. Every worker w ∈ W has preference

≿w over F ∪ {w} and every f ∈ F has a preference ≿f over W ∪ {f }. A preference

for oneself is a preference to be unmatched: if a prefers a to b this means that

a prefers to remain unmatched than to match to b. Throughout I assume that

≿a is complete, reflexive, transitive, and anti-symmetric; that is, that a can rank

partners from most to least preferred with no ties.

A match is a function µ that takes in an agent a and returns the agent µ(a) that
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he or she is matched, where a = µ(a) means that a is unmatched. Formally, match

is a function µ : A→ A such that:

1. if w ∈W then µ(w) ∈ F ∪ {w}; and

2. if f ∈ F then µ(f ) ∈W ∪ {f }; and

3. µ(µ(a)) = a.

The first two require that the match is two-sided: every worker matches to a firm

(or is unmatched) and every firm matches to a worker (or is unmatched). The

third requires that every agent is matched to the agent matched to him or her. If

µ(a) = a then a is µ-unmatched; otherwise, µ(a) is the µ-partner of a (or possibly

µ-firm or µ-worker). I write µ ≿X µ′ to mean µ(x) ≿x µ′(x) for all x ∈ X.

There is an initial match µ0. The initial match limits the set of matches I

consider to the set of matches I consider to those satisfying the following:

Definition 1. Match µ is individually rational if µ ≿A µ0.

The interpretation is that if an agent prefers their initial match µ0 to the pro-

posed match µ, they retain the right to demand µ0, as it represents an enforceable

agreement.

3.1 The Core

Here I formally introduce the core, which is the set of all individually rational

matches not blocked by any coalition of agents. A coalition blocks a match if it

can collectively form a match within the coalition that everyone weakly prefers

to the current match. Formally, a coalition C ⊆ A is a nonempty2 subset of agents

who may form a match among themselves. Let µ(C) ≡ {µ(a) : a ∈ C}. Note that if

µ(C) ⊆ C, then µ(C) = C. If a coalition weakly prefers a match µ′ to µ and µ′ only

matches agents in C to agents in C, then C may block µ; formally,

2Coalitions throughout the paper assumed nonempty. For ease of exposition this quantifier

will not be listed.
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Definition 2. Coalition C blocks µ through ν if ν ≿C µ, ν(a) ≻a µ(a) for at least one

a ∈ C, and ν(C) = C.

The core is the set of all individually rational matches not blocked by any

coalition through any match.3

3.2 The Agreeable Core

Example 1 demonstrates that the core may be empty. The nonexistence of a match

that is both individually rational and unblocked by every coalition of agents mo-

tivates restricting either the matches a coalition can block through or the coali-

tions considered. The choice is nontrivial and hinges upon the interpretation of

the initial match.

If the matches that a coalition can block through are restricted, then the nat-

ural requirement is that any coalition can block but only through an individually

rational match µ. The interpretation is that the initial match is inviolable ex post.

In order to block a match, a coalition needs only to suggest an individually ra-

tional match; as long as all agents are weakly better off than at µ0, no agent can

complain about his or her partner. However, it is easy to construct examples

where this solution is empty.

The alternative is to restrict the set of coalitions but not the matches they can

block through. The interpretation is that the initial match is not only inviolable

ex post but also that any new contract formed by an agent requires the ex ante

approval of his or her µ0-partner. I consider only coalitions meeting the following

criterion:

Definition 3. A coalition C is agreeable if µ0(C) = C.

3Formally, this is the strong core because I consider all weak blocks (allowing some coalition

members to be indifferent between µ′ and µ). In two-sided matching without indifferences all

weak blocks are strong blocks. Because the coalitions I will consider later will usually contain

agents who do not change partners, I use the strong core as it is smaller.
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A coalition C is agreeable if any contract in µ0 does not contain both an agent

in C and an agent not in C. By restricting my attention to agreeable coalitions,

I require that every agent in a blocking coalition of µ guarantees his or her µ0-

partner a weakly better partner at match µ′ than at µ. To guarantee such an

improvement, the µ0-partner’s partner at µ′ must also be included in the coali-

tion, which implies that the µ0-partner’s µ′-partner must also be included in the

coalition, and so on. Definition 4 formalizes this idea.

Definition 4. The agreeable core is the set of individually rational matches not

blocked by any agreeable coalition.

The agreeable core puts a strong requirement on blocking coalitions: every

agent in the coalition and their µ0-partners must be made weakly better off. My in-

terpretation is that if some agent a is harmed by a block and his or her µ0-partner

is in the blocking coalition, then a can veto the block by refusing to dissolve the

initial contract. The important nuance is that the harmed agent can veto µ′ even

if he or she prefers µ′ to µ0.

The veto power inherent in the agreeable core allows one member of a ini-

tial match to dictate the matches his or her partner can form. The picture to

have in mind is both agents in a initial match simultaneously searching for better

matches. They both agree to cancel their initial match simultaneous to both con-

firming new partners. Because the match of one partner influences who is willing

to match with the other, both must agree not only to cancel their initial match but

also approve of the other’s new match. By only considering agreeable coalitions,

I allow agents to veto a blocking coalition before the coalition acts.

I find the following justification for the agreeable core helpful in explaining

the agreeable core and how I allow agents veto blocking coalitions ex ante. For a

given initial match µ0, agents are considering forming the individually rational

match µ. Before µ is realized among the agents (say, before the agents cancel their

initial agreements and form the µ agreements), a coalition considers enforcing
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some match µ′ among themselves. If some agent a is in the coalition but µ0(a) is

not in the coalition, then µ0(a) may refuse to permit a to form µ′ unless µ0(a) is

certain he or she will prefer µ′ to µ. Hence, µ0(µ) must also be in the coalition.

Perhaps surprisingly, the set of matches not blocked by any agreeable coali-

tion is not a subset of the individually rational matches. My definition of block-

ing coalition does not allow an agent to demand µ0, and hence the restriction to

individually rational matches is substantive. For a simple example, restrict Ex-

ample 1 to just contractor 1 and city A. The match µ(1) = 1 and µ(A) = A is not

blocked by any coalition but does not Pareto improve µ0.

I devote Section 4 to developing the machinery to prove my main result,

namely, that the agreeable core is never empty. In the remainder of this section I

briefly touch on several aspects of the agreeable core that do not require my more

involved techniques. Section 3.3 shows that the agreeable core is always Pareto

efficient, and conversely if µ0 is Pareto efficient then {µ0} is the agreeable core. As

alluded to in the introduction, my model features several connections with both

the classical model of stability (Gale and Shapley, 1962) and more recent mod-

els of reassignment (Combe, Tercieux and Terrier, 2022; Pereyra, 2013). In Sec-

tion 3.4 and Section 3.5 I develop these connections; as an expository device and

a prelude to my algorithm, I highlight the two leading algorithms in two-sided

matching—the Deferred Acceptance and the Top Trading Cycles algorithms—

and their adaptations used in the literature to guarantee individual rationality.

3.3 Efficiency

In this subsection I investigate the efficiency of the agreeable core. My first ob-

servation is that no match in the agreeable core is Pareto dominated:4 if ν Pareto

dominates µ, then the grand coalition A (which is always agreeable) blocks µ

4I say that ν Pareto dominates µ if every agent weakly prefers ν to µ and at least one agent

strictly prefers ν to µ.
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through ν. My second observations is a kind of a converse: if µ0 is not Pareto

dominated, then µ0 is in the agreeable core. To see this, suppose (toward a con-

tradiction) that some agreeable coalition C blocks µ0 through µ. But then because

µ0(C) = µ(C) = C, I can define µ′ that agrees with µ for agents in C and agrees

with µ0 everywhere else. But µ′ then Pareto dominates µ0, a contradiction to the

supposition that µ0 is Pareto efficient.

Remark 1. Every µ in the agreeable core is Pareto efficient.5 Moreover, µ0 is Pareto

efficient if and only if the µ0 is the unique element of the agreeable core.

Remark 1 assures us that the agreeable core satisfies the most common effi-

ciency standard.

3.4 Connection to Stability

In this subsection I discuss the parallels between the agreeable core and the clas-

sic theory of stability introduced by Gale and Shapley (1962). The models are

the same except that the classical model does not include an initial match in the

primitives. This connection allows me to leverage a significant tool from two-

sided stability, the Deferred Acceptance algorithm (DA), in my analysis

In the classic model, a blocking pair of a match is any worker and firm pair such

that both prefer each other to their match. A match is stable if all agents prefer

their match to being unmatched and there are no blocking pairs of the match. It

is well-known (Roth and Sotomayor, 1990) that the set of stable matches is the

core that I defined previously. My definition of the agreeable core guarantees that

if µ0(a) = a for all a ∈ A, then the agreeable core corresponds to the core because

every coalition is agreeable. Therefore stability is the special case of the agreeable

core when µ0 leaves all agents unmatched.

Gale and Shapley (1962) gives an efficient algorithm for constructing a sta-

ble match: the Deferred Acceptance algorithm (Algorithm 1). Initially, the DA
5If µ is not Pareto dominated by any ν, then µ is Pareto efficient.
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“activates” every worker and designates every agent as “currently unmatched.”

At every step of the DA, some active worker matched proposes to the firm he

prefers the most among those he has not proposed to yet (if he would rather be

unmatched, he is matched to himself and deactivated). Every firm then reviews

the proposals she receives and her current match and rejects all but her most

preferred proposal or match. The process continues until no more workers are

matched active.

Algorithm 1 Deferred Acceptance (DA) algorithm

Notation: when I write µDA(a) ← w, I mean that a is matched to w and w is

deactivated. If another worker w′ was matched to a, then a rejects w′, w′ is

matched to himself, and w′ is activated.

set µDA(f )← f for all f ∈ F.

activate every worker.

while some worker w is activated do

w proposes to his most-preferred firm f that he has not yet proposed to; if

he would rather be unmatched, instead he proposes to himself and is deacti-

vated, and we set µDA(w)← w.

if f prefers w to µDA(f ) then set µDA(f )← w.

else f rejects w.

end while

return µDA

Although guaranteed to produce a match unblocked by any coalition, the DA

fails to satisfy individual rationality (see Pereyra (2013) and Combe, Tercieux and

Terrier (2022)). There are two ways in which individual rationality can fail. First,

a worker may strictly prefer his µ0-partner to his match. Pereyra (2013) resolves

this issue by requiring that each firm accepts her µ0-partner if he proposes to her.
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This modification guarantees that workers find the outcome individually rational

because no worker proposes to a less preferred firm without being rejected by his

µ0-partner.

In my setting firms also have individual rationality constraints. The DA fails

to accommodate these because a worker makes proposals (and may be matched

to another firm) even though his µ0-firm has not received a proposal she prefers

to the worker. I will see in Section 4.2 how to resolve this tension by limiting

which workers can propose.

3.5 Connection to Reassignment

In this subsection I highlight the connection between the agreeable core and the

standard model of reassignment. Recent research in reassignment seeks to find a

match through a strategyproof mechanism that is both individually rational and

maximizes some objective function (see (Combe, Tercieux and Terrier, 2022; Dur

and Ünver, 2019) for two such examples). Because the agreeable core is motivated

with first principles (the core) rather than with an objective in mind (obtaining

a strategyproof mechanism), there are substantial differences in definitions and

results. However, both approaches employ the same method: the Top Trading

Cycles algorithm (TTC).

The TTC finds a match such that no coalition of workers can reallocate their

µ0-firms among themselves and improve their matches. The TTC starts with

every worker and firm “active.” At every step, every active firm points at the

worker she is initially matched to, and every active worker points at his favorite

active firm. At every step a cycle must form. The TTC assigns each worker in the

cycle to the firm he points at, and then the agents in the cycle become inactive.

The process terminates when no agents are active.

I define the TTC in Algorithm 2.

If some agents are matched by µ0, then the TTC may not be individually ratio-



4 A Proof of Existence: The Propose-Exchange Algorithm 21

Algorithm 2 Top Trading Cycles (TTC) algorithm

set µTTC(a) = a for all a.

every agent is activated.

while at least one agent is active do

every active worker points to his most-preferred of the active firms.

every active firm points to her most preferred of the active workers.

choose an arbitrary cycle (w1, f2, . . .w2k−1 ≡ w1, f2k ≡ f2) such that every

agent points to the next agent in the cycle.

all agents in the cycle are deactivated.

match every wk to fk+1.

end while

return µTTC

nal. To accommodate this, Combe, Tercieux and Terrier (2022) and Combe (2023)

make the following two modifications. First, a firm must point to her µ0-worker

so long as he is active. This guarantees that µTTC ≿W µ0. Second, no worker may

point to a firm if that firm prefers her µ0-partner to the worker. This guarantees

that µTTC ≿W µ0.

In my setting, however, these modifications are not enough. As I saw in Sec-

tion 3.4, the agreeable core equals the set of stable matches when all agents are

µ0-unmatched. At least in this case firms must be given power to decide between

the workers pointing to them, as in the DA. In section Section 4.3 I incorporate

this by limiting which workers and firms participate in the TTC.

4 A Proof of Existence: The Propose-Exchange Algorithm

In this section I present a computationally efficient and economically meaning-

ful algorithm that always produces a match µ2 (defined through this section) in

the agreeable core. My algorithm is the Propose-Exchange algorithm (PE) and is
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composed of two stages. The Propose stage resembles the Deferred Acceptance

algorithm and eliminates any block by a coalition that either includes an agent

who is unmatched in the initial match or who becomes unmatched by the block.

The Exchange stage resembles the Top Trading Cycles algorithm and eliminates

all blocks that involve reshuffling initial partners among themselves. For readers

unfamiliar with the Deferred Acceptance and the Top Trading Cycles algorithms,

I refer the reader to Section 3.4 and Section 3.5, respectively.

The PE directly implies that the agreeable core exists and provides some in-

sight into its structure. My main result is the following:

Theorem 1. µ2 is in the agreeable core.

The proof (and definition of µ2) occupies the remainder of this section. I first

introduce a particular directed graph representation of the matching problem in

Section 4.1, then introduce the Propose stage in Section 4.2, and finally the Ex-

change stage in Section 4.3. I conclude this section by noting how the introduc-

tion of initial matches creates additional complexity in analyzing the structure of

the agreeable core. All omitted proofs are contained in Appendix A.

4.1 A Graph-Theoretic Depiction

Despite my parsimonious definition of the agreeable core, so far testing whether

µ is in the agreeable core requires checking whether any coalition can block µ

through any µ′, which is only feasible in small examples. My main result from

this subsection is a characterization of blocking coalitions in terms of paths in a

directed graph, which is computationally efficient. I use the language of graph

theory to formalize my ideas.

A digraph G is a pair (V ,E) where V is a set of vertices and E is a set of ordered

pairs of vertices called (directed) edges, possibly including an edge from a vertex

to itself, called a loop. The one nuance to my construction is that I allow for loops



4 A Proof of Existence: The Propose-Exchange Algorithm 23

to be repeated once in E; formally, E is a multiset, but this will not cause any

confusion.

I consider digraphs where the vertices are agents, and the edges represent

matches. Edges going from F to W (and loops) are drawn from µ0, while the

edges going fromW to F (and possibly repeated loops) are drawn from µ and any

blocking pairs of µ. I abuse notation and write µ0 for both the function and for

the set of ordered pairs:

µ0 = {(f ,w) : µ0(f ) = w} ∪ {(a,a) : µ0(a) = a}

µ = {(w,f ) : µ(w) = f } ∪ {(a,a) : µ(a) = a}.

It is critical to understand that µ0 and µ go in opposite directions (except for any

loops). I always follow the convention that edges from the initial match travel

from F to W , so although the matches µ0 or µ may change, from context the

direction of the edges is always clear. To include the blocking pairs, I define:

I(µ) = {(w,f ) : f ≻w µ(w) and ≻f µ(f )} ∪ {(a,a) : a ≻w µ(a)}

My main digraph of interest is (A,µ0∪µ∪I(µ)). That is, the vertices are agents, the

first set of edges connects initial partners, and the second set of edges connects

all pairs that weakly prefer each other over their µ-partners.

Figure 5 depicts the three types of edges using the set-up of Example 1 and a

match µ that modifies the initial match µ0 by leaving fD unmatched and matching

w4 to fC . Subfigure (a) includes the edges from µ0, which are either loops (in the

case of w3 and fC) or point from F to W . Subfigure (b) includes the edges from µ,

which point from W to F. Subfigure (c) includes the blocking pairs of µ, which

point from W to F.

A (simple) path in (V ,E) is a vector of edges P = (e1, . . . , en) such that the second

coordinate of ek equals the first coordinate of ek+1 for 1 ≤ k < n and no vertex

appears in more than two edges. Recall that a loop may appear twice (in both µ0

and µ∪ I(µ)) so it is possible for path to consist of exactly two loops. I say a vertex
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fAw1

fBw2

fCw3

fDw4

(a) Initial Match µ0

fAw1

fBw2

fCw3

fDw4

(b) Proposed Match µ

fAw1

fBw2

fCw3

fDw4

(c) Blocking Pairs of µ

fAw1

fBw2

fCw3

fDw4

(d) Acyclic Blocking Path

fAw1

fBw2

fCw3

fDw4

(e) Cyclic Blocking Path

Figure 5: The blocking digraph (A,µ0 ∪ µ∪ I(µ)) is the union of the digraphs in

subfigures (a), (b), and (c). Subfigures (d) and (e) depict the two kinds of blocking

paths.
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is in a path if the path contains an edge that contains the vertex. I sometimes

abuse notation and write P for the vertices in P .

A path P is complete if every vertex contained in the path is contained in ex-

actly two edges of the path. A path is alternating if it no two consecutive edges

(including loops) alternate between µ0 and µ ∪ I(µ).6 Two complete and alter-

nating paths are depicted in subfigures (d) and (e) of Figure 5. For an arbitrary

complete and alternating path P in (A,µ0 ∪µ∪ I(µ)), I define µP (a) as follows:

• if (w,f ) is in P , then µP (w) = f .

• if a is not in P but µ(a) is in P , then µP (a) = a;

• if a is not in P and µ(a) is not in P , then µP (a) = µ(a).

That is, µP matches a ∈ P to the agent whom a shares an edge from µ ∪ I(µ) in

P with; other matches are left unchanged where possible. By Lemma A.1 in the

appendix, every agent in P is contained in one edge from µ0 and one edge is from

µ∪ I(µ), so µP is well defined and µP (P ) = P .

My main result of this subsection is that a path that is complete, alternating,

and contains an edge from I(µ) corresponds to an agreeable blocking coalition in

(A,µ0 ∪µ∪ I(µ)). I formalize this as follows:

Definition 5. Path P is a blocking path of µ if P is a complete and alternating path

in (A,µ0 ∪µ∪ I(µ)) that contains at least one edge from I(µ).

A blocking path of µ is aptly named as it corresponds to a blocking coalition

of µ.

Proposition 1. An individually rational match µ is in the agreeable core if and only

if µ admits no blocking paths. Moreover, if P is a blocking path of µ then P blocks µ

through µP .

6Although the directed nature of the digraph makes most paths alternating, by formally re-

quiring that a path is alternating I rule out the case that (w,f ) and (f , f ) may both be from µ∪I(µ).
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Proposition 1 provides a test that is linear in the number of edges to see if µ

is in the agreeable core.7

The Propose-Exchange algorithm is built on a partition of paths between those

that form cycles and those that do not:

Definition 6. Let P = (e1, . . . , en). If the first coordinate of e1 is the second coordi-

nate of en, then P is cyclic; otherwise, P is acyclic.

As the name suggests, cyclic paths start with an agent and then return to

that agent. In (A,µ0 ∪ µ ∪ I(µ)), a cyclic, complete, and alternating path corre-

sponds to agents (who are µ0-matched) trading their µ0-partners among them-

selves. Acyclic paths that are also complete and alternating start with a loop

and end with a loop, forming a line in the digraph. See subfigures (d) and (e) of

Figure 5 for example cyclic and acyclic blocking paths. In (A,µ0 ∪ µ ∪ I(µ)), an

acyclic, complete, and alternating path corresponds to agents trading their µ0-

firms among themselves, except that two agents are unmatched by one or both

sets of edges. The Propose-Exchange algorithm works by first producing a match

µ1 that admits no acyclic blocking paths, then finding a series of Pareto improve-

ments of µ1 to produce a match µ2 that has no cyclic blocking paths.

4.2 The Propose Stage

The first stage of my algorithm outputs a match µ1 by systematically removing

all acyclic blocking paths from (A,µ0 ∪ µ∪ I(µ)). An acyclic blocking path P in

(A,µ0 ∪ µ∪ I(µ)) corresponds to a series of trades, but the agents at either end of

the path are either µ0-unmatched or µP -unmatched. These may be thought of as

a cycle that includes the “unmatched” agent.

The Propose algorithm is a variation of the Deferred Acceptance algorithm.

The DA is designed for markets where all agents are unmatched under µ0 and is

7A depth first search initiated from every edge in I(µ) is sufficient.
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defined in Algorithm 1. I noted in Section 3.4 that the DA may fail individual

rationality for both workers and firms. I provide guarantees to the agents in the

Propose algorithm by only allowing a worker to make a proposal once his µ0-firm

has received a more preferred proposal and by requiring that a firm accept any

proposal from her µ0-worker. These adjustments, shown in italics, are essential

to the success of the Propose stage. The Propose stage algorithm is defined in

Algorithm 3. By construction, µ1 is individually rational. If w strictly prefers µ0

Algorithm 3 Propose Stage algorithm

Notation: when I write µ1(a) ← w, I mean that a is matched to w and w is

deactivated. If another worker w′ was matched to a, then a rejects w′, w′ is

matched to himself, and w′ is activated.

set µ1← µ0

activate every worker.

if w’s µ0-firm prefers w to being unmatched, then deactivate w.

while some worker w is active do

w proposes to his most-preferred firm f that he has not yet proposed to; if

he would rather be unmatched, instead he proposes to himself and is deacti-

vated, and we set µ1(w)← w.

if f is w’s µ0-partner, then set µ1(f )← w and have f reject all future proposals.

else if f prefers w to µ1(f ) and to being unmatched, then set µ1(f )← w.

else f rejects w.

end while

return µ1

to µ1, then w would have proposed to µ0 (and not been rejected). Again, if µ0(f )

is matched by µ1 to a firm other than f , then f received a proposal she prefers to

µ0(f ) and hence she prefers µ1 to µ0.

I then show that at the end of the Propose algorithm, no blocking path of µ1



4 A Proof of Existence: The Propose-Exchange Algorithm 28

is acyclic.

Lemma 1. µ1 admits no acyclic blocking paths.

My proof leverages that an acyclic blocking path P in (A,µ0 ∪µ∪ I(µ)) always

begins with either a worker who is µ0-unmatched and hence proposes or a firm

who is µP -unmatched (and hence her µ0-worker starts out active). Because the

start and finish of the path are connected by workers who (weakly) prefer the

firm they receive in the block, I can show that every worker in the path must

have had the opportunity to propose. I then show that the path must terminate

with either a worker who is µ0-matched or a firm who is µ0-unmatched, neither of

which would reject the proposal made through the path. I conclude by showing

that every firm accepts the proposal from her µP -partner, which contradicts that

µ , µP .

The while step admits ambiguity because which worker is selected to propose

is not specified. I show in Proposition 2 that the order in which workers are

selected is irrelevant.

Proposition 2. The output of the Propose stage is independent of the order the workers

are called to propose in.

4.3 The Exchange Stage

In the second stage of the algorithm, I eliminate all cyclic blocking paths. I do

this by allowing agents to trade their initial agreements. Cyclic blocking paths

in (A,µ0 ∪ µ ∪ I(µ)) correspond to workers and their µ0-firms rearranging their

initial matches among themselves. No agent in a cyclic path is unmatched by

either µ or µ0. A cyclic blocking path represents an inefficient allocation for C:

the coalition could have rearranged their initial matches among themselves and

obtained a better match.

The Exchange algorithm is an adaptation of the Top Trading Cycles algorithm

to find these cycles and remove them. The difficulty with using solely the TTC
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in my setting is that the TTC does not give firms the ability to select between

workers. Although firm’s preferences limit the set of acceptable workers, which

worker is matched to the firm ultimately depends on the worker the firm is re-

quired to point at. If only some workers or firms are matched by µ0, then the

firm’s lack of choice can lead to violations of the agreeable core. I resolve this by

only applying the TTC to workers and firms who did not both find better part-

ners through the Propose algorithm, with my addition indicated in italics. This

modification guarantees that the Exchange stage is a Pareto improvement of µ1;

by selecting a Pareto improvement, I do not create any new acyclic blocking paths

in the blocking digraph. The Exchange algorithm is defined in Algorithm 4.

Algorithm 4 Exchange Stage algorithm

set µ2(a) = µ1(a) for all a.

every w such that µ1(w) = µ0(w) is activated with µ0(w).

while at least one worker is active do

every active worker points to his most-preferred of the active firms who

prefer him to her µ0-worker.

every active firm points to her µ0-worker.

choose an arbitrary cycle (w1, f2, . . .w2k−1 ≡ w1, f2k ≡ f2) such that every

agent points to the next agent in the cycle.

all agents in the cycle sit down.

match every wk to fk+1.

end while

return µ2

My first observation is that the Exchange algorithm makes no agents worse

off than under µ1. Workers only point to firms they prefer to µ0, and by my

simplification of workers’ preferences, firms can only be pointed at by workers

they prefer to µ0. The result is that at the end of the Exchange algorithm, µ2

admits no cyclic blocking paths.
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Lemma 2. µ2 admits no cyclic blocking paths.

My proof leverages that if w strictly prefers f to µ2(w), then f must sit down

at least one step before w. A cyclic blocking path then implies that the firms in

the path sit down on average strictly before the workers in the path sit down.

However, because every worker’s µ0-firm is in the path and they sit down in the

same step, it must be that the firms in the path sit down on average in the same

step as the workers in the path sit down. This contradiction rules out cyclic

blocking paths.

4.4 Existence

I am now ready to prove that µ2 is in the agreeable core.

Proof of Theorem 1: Suppose (toward a contradiction) that µ2 is not in the agree-

able core. Then by Proposition 1 the digraph (A,µ0∪µ2∪I(µ2)) contains a blocking

path P . By Lemma 2, P is acyclic. But P is also blocking path in (A,µ0∪µ1∪I(µ1))

because µ2 ∪ I(µ2) ⊆ µ1 ∪ I(µ1) and I(µ2) ⊆ I(µ1). By Lemma 1, P is not acyclic.

This is a contradiction, which proves the claim.

The importance of the Propose-Exchange algorithm in my proof cannot be

understated. However, the algorithm has practical implications because it is also

computationally efficient. The Propose stage runs in polynomial time because

each worker can make at most |F| + 1 proposals. Similarly, one cycle is removed

in every iteration of the Exchange stage, and at most |F| cycles can be removed.

An efficient algorithm is necessary for implementing the agreeable core in appli-

cations.

4.5 Structure

In this subsection, I highlight the difficulty in characterizing the underlying struc-

ture of the agreeable core and how it relates to other classes of algorithms com-
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monly used to compute core outcomes. Although the set of stable matches has

a well-understood structure which I summarize in the following paragraph, the

agreeable core is not as tame. The hurdle in the analysis comes from the Exchange

stage. To the best of my knowledge, there are no results from the literature that

apply to the agreeable core when every agent is µ0-matched.

I briefly summarize the main structural results on the set of stable matches.

First, a lattice is a partially ordered set (L,≥) such that any two elements of L have

a unique least upper bound, called the join of x and y, and a unique greatest lower

bound, called the meet of x and y. That is, there is a unique x ∨ y such that if

z ≥ x and z ≥ y then z ≥ x ∨ y, and there is a unique x ∧ y such that if x ≥ z and

y ≥ x then x ∧ y ≥ z. A key result in two-sided matching is that the set of stable

matches forms a lattice with the partial order ≿W .8 The join of two matches µ

and ν is the match that gives every worker w his more preferred partner from

{µ(w),ν(w)} and every f her less preferred partner from {µ(f ),ν(f )}; the meet is

given symmetrically. This implies that there is a conflict of interest between the

workers and the firms: if every worker weakly prefers a stable µ to a stable ν,

then every firm weakly prefers ν to µ. Moreover, there is a worker optimal stable

match and a firm optimal stable match.

To show that the agreeable core fails to be a lattice, consider the following

example. Let µ0(w1) = fA, µ0(w2) = fB, and µ0(w3) = fC , and preferences are

given as in Section 4.5. Both the pair w2 and fB and the pair w3 and fC prefer

to participate in a cycle with the pair w1 and fA, but w1 and fA have opposing

preferences over the two possible cycles. Worker w1 prefers firm fC and firm fA

prefers workerw2, and so either cycle may be in the agreeable core. The agreeable

core consists uniquely of the µ̄match and the µ̇match, a pair which is not ordered

by ≿W . In this example there is no worker optimal match.

Despite the impossibility of recovering a complete lattice over the agreeable

8Donald Knuth attributes this to John H. Conway.
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w1 w2 w3

fC fA fA

fB fB fC

fA ∅ ∅

∅ fC fC

fA fB fC

w2 w1 w1

w3 w2 w3

w1 ∅ ∅

∅ w3 w2

(a) Initial match—µ0

w1 w2 w3

fC fA fA

fB fB fC

fA ∅ ∅

∅ fC fC

fA fB fC

w2 w1 w1

w3 w2 w3

1 ∅ ∅

∅ w3 w2

(b) w2, fA, and fB’s preferred match—µ̄

w1 w2 w3

fC fA fA

fB fB fC

fA ∅ ∅

∅ fC fC

fA fB fC

w2 w1 w1

w3 w2 w3

w1 ∅ ∅

∅ w3 w2

(c) w1, w3, and fC ’s preferred match—µ̇

Figure 6: An example showing that the outcomes in the agreeable core cannot be

ordered by ≿W .
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core as in the classic model of stability, I show that a narrower result continues

to hold. Given that the lattice structure failed in the example because two com-

peting cycles exist in the agreeable core, an astute reader may conjecture that the

lattice structure continues to hold for workers and firms who do not lie in such

cycles. Suggestively, say that a is a free agent in µ if a lies on an acyclic, complete,

and alternating path of (A,µ0,µ). My first proposition justifies my terminology:

Proposition 3. If µ is in the agreeable core, then there are no blocking pairs among free

agents in µ. Moreover, every free agent a in µ weakly prefers µ(a) to being unmatched.

The proof of Proposition 3 shows that these agents are “free” to form blocking

pairs because each can satisfy a sequence formed by alternating edges from µ0

and µ. Free agents resemble the agents in the classic model: their µ0-partner (if

any) is not concerned with the partner she finds.

However, an obstacle arises because the free agents depend on µ; that is, a

may be a free agent in µ but not in ν. What I can show is that, if µ and ν share the

same set of free agents and they agree on the agents who are not free, then µ∨ν is

in the agreeable core. Toward that end, I say that µ and ν are structurally similar

if they have the same set of free agents and µ(a) = ν(a) for every agent which is

not free. The following lemma shows that structurally similar matches in the

agreeable core play nicely with the join and meet operators defined previously:

Lemma 3. Let µ and ν be structurally similar matches in the agreeable core. Then

µ∨ ν is a match. The same holds for µ∧ ν.

Notably, µ∨ν may not be structurally similar to µ and ν.9 The (possible) struc-

tural differences between µ∨ ν and µ force us to discard any hope of obtaining a

lattice-like result. However, the join and meet operators still produce matches in

the agreeable core:

9I have an example demonstrating this (available upon request), but it is too lengthy to include

because it involves eight workers and eight firms.
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Theorem 2. Let µ and ν be structurally similar matches in the agreeable core. Then

µ∨ ν and µ∧ ν are both in the agreeable core.

The conflict of interest continues to hold for structurally similar matches.

That is, if µ and ν are in the agreeable core and are structurally similar, then if

every worker weakly prefers µ to ν, then every firm weakly prefers ν to µ. Con-

versely, in the classic matching framework, µ0(a) = a for every agent and thus

every agent is free. Every match is then structurally similar and hence my Theo-

rem 2 generalizes standard results.

5 Incentives in the Propose-Exchange algorithm

This section addresses the incentive properties of the Propose-Exchange algo-

rithm. The results provide insight into how robust the PE is to manipulation

by participants. This is crucial for implementing the PE in practice because the

output of the PE is only guaranteed to be in the agreeable core if the inputs are

accurate. I find that while the PE is more susceptible to more kinds of manip-

ulations than either the DA or the TTC, the new manipulations are difficult to

execute.

I consider two kinds of manipulations in these subsections. In the first, I allow

a worker to arbitrarily misreport his preference.10 In the second, I allow a worker

and a firm to create an artificial initial match, a misreport of µ0.

For clarity through this section, I write ≿′w-Propose stage to indicate the op-

eration of the Propose stage on the matching problem when w’s preference ≿w is

replaced by ≿′w. A similar shorthand is used when µ0 is replaced by µ′0.

10It is well-known that a firm can manipulate the DA by misreporting her preference, so I only

consider the problem from the worker’s perspective.
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5.1 Preference Manipulation

In this subsection I discuss preference manipulations by workers. I allow a worker

w to misreport his preference ≿w by reporting ≿′w instead. The intuition is that

a worker may benefit from manipulating which agents (including himself) are

active in the Exchange stage. I show that there may exist a worker who can prof-

itably misreport his preference in the PE. However, this problem is not unique

to the PE, but exists for every algorithm that produces a match in the agreeable

core. These results are in contrast to their parallels in existing theory: no worker

can profitably misreport his preferences in the DA or TTC (Dubins and Freed-

man, 1981; Dur and Ünver, 2019). I connect these results by showing that only

workers who participate in both stages of the PE can profitably misreport their

preferences.

Formally, mechanismψ is a function of (W,F,≿,µ0) that returns a matchψ(W,F,≿

,µ0).

Definition 7. A mechanism is preference manipulable if there is at least one match-

ing problem (W,F,≿,µ0), worker w, and preference ≿′w such that

ψ(W,F,≿−w,≿
′
w,µ0) ≿w ψ(W,F,≿,µ0).

In words, if for some example a worker w would rather report ≿′w instead of ≿w,

then ψ is preference manipulable.

A natural question arises as to whether a mechanism exists that is non-preference-

manipulable and produces a match in the agreeable core. Proposition 4 provides

a negative answer:

Proposition 4. If ψ(≿) is in the agreeable core for all ≿, then ψ is preference manipu-

lable.

I prove Proposition 4 through a counterexample. The counterexample is driven

my the possibility of bossiness within the DA. A mechanism is bossy if an agent
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w1 w2 w3

fA fB fC

fB fA fA

fC fC fB

fA fB fC

w2 w1 w3

w3 w2 w2

w1 w3 w1

(a) Outcome of DA before preference

swap

w1 w2 w3

fA fB fA

fB fA fC

fC fC fB

A B C

w2 w1 w3

w3 w2 w2

w1 w3 w1

(b) Outcome of DA before preference

swap

Figure 7: Worker w3’s exchange of the order of fC and fA in his preference leaves

his partner unchanged, but causes workers w1 and w2 to receive new partners.

can, by misreporting his preference, affect the matches of the other agents with-

out changing his own. Consider the example in Figure 7. Worker w3 can cause

workers w1 and w2 to exchange partners by misreporting a preference for firm

A. In the counterexample in the proof of Proposition 4, there is a worker w1 who

would like to exchange initial partners with w2. Worker w1 reduces w2’s ability

to match to an initially unmatched firm by including that firm in his own pref-

erences. Effectively, if w2 is a free agent then w1 will not be able to match to

µ0(w1). Thus, w1 manipulates w2’s options to keep w2 matched to µ0(w2) to cause

an exchange.

Theorem 3 formalizes this intuition. It shows that a worker only has two av-

enues through which to profit from a misreport. First, the worker may profit from

finding a partner in the Exchange stage rather than the Propose stage. This is sim-

ilar to truncating11 his preferences. Second, the worker may find his partner in

the Exchange stage but choose to manipulate which workers who participate in

the Exchange stage, as in the counterexample previously discussed.

11moving his initial partner higher; see Roth and Rothblum (1999)
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Theorem 3. If worker w has a profitable misreport ≿′w, then w is active in both stages

of the ≿′w-Propose-Exchange algorithm.

Because whether a worker is active in the Propose stage is independent of

his reported preferences, Theorem 3 further restricts the set of workers who can

profitably misreport. A worker can only profitably misreport if he both has a µ0-

firm and is active in the Propose stage. For a market designer, these conditions

are easy to verify and provide an upper bound on the number of workers who

can profitably manipulate. Additionally, Theorem 3 highlights the informational

requirements necessary to profitably misreport. A worker must be able to pre-

dict the outcome of the Exchange stage, which itself is a complicated object and

depends on which agents participate in the Exchange stage.

5.2 Manipulating µ0

In this subsection I complement the analysis of how preferences may be prof-

itably misreported with an analysis of how the initial match may be profitably

misreported. The concern is that because the initial match µ0 affects the output

of the PE, a pair of agents may find it in their interest to create a superfluous ar-

tificial agreement. I show that, while such a manipulation is possible, it usually

requires an additional preference manipulation to be successful. I conclude that

profitably misreporting the initial match requires a similar level of sophistication

as a preference manipulation.

Formally, let µ0 be given (and fixed throughout this subsection) with µ2 the

output of the µ0-PE. Let worker w and firm f be both µ0-unmatched, and let µ′0

be formed from µ0 by matching w and f . Let µ′1 and µ′2 be the respective outputs

of the µ′0-Propose and µ′0-Exchange stages. If both w and f strictly prefer µ′2 to

µ′1, thenw and f can profitably misreport an initial match. Profitably misreporting

an initial match requires that both w and f strictly gain from the deviation.

I show that, although it is possible for the PE to be manipulated in this way, its
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extent is quite limited and involves substantial risk for the worker. First, I show

in Theorem 4 that any profitable misreport pushes w and f from the Propose

stage into the Exchange stage (µ′1(w) = f ). The intuition is that if µ′1(f ) , w, then

f has received a better partner in the µ′0-Propose stage and thus that all of the

workers have received a worse partner. Second, Theorem 4 also shows that for

any profitable misreport, w cannot be active in the µ′0-Propose stage.

Theorem 4. If w and f can profitably misreport an initial match, then µ′1(w) = f and

w is not active in the µ′0-Propose stage.

The interpretation of Theorem 4 is that f must prefer w to f ’s match when w

is removed from the matching problem entirely. In effect, f faces little risk from

the misreporting because w is as good as (if not better than) what f would receive

if w were not present. For w however, an initial match with f could carry great

risk if f is low on w’s preferences relative to µ1(w). This strategy may backfire

because a mistake in w’s calculations (or a misrepresentation by f ) could render

w assigned to f .

In summary, neither misreporting preferences or the initial match appears

likely to succeed without detailed knowledge of the other participants’ prefer-

ences. Misreports frequently expose misreporting agents to a large downside

risk. These incentive findings inform the broader applicability of the PE, which

I discuss in the following section.

6 Conclusion

This paper has shown the strength of the agreeable core in providing a theory of

equilibrium for a broad class of matching markets. The initial match organically

models numerous real-world examples, and the Propose-Exchange algorithm is

ready to be implemented in a variety of applications. In this closing section I dis-

cuss three topics. First, I review the connections between this paper and existing
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research. Second, I provide guidance on applying the Propose-Exchange algo-

rithm in several environments. Last, I close with a discussion of my modeling

choices and possible extensions.

6.1 Connection to the Literature

This paper develops a novel theory of matching under initial contracts that bridges

object allocation and two-sided matching. It connects several literatures on two-

sided matching. An exhaustive review of the literature is far beyond the scope

of this paper, so I list the only the most closely related work and its connections

with this paper.

I integrate the classic model of two-sided matching with recent advances in

recontracting. In the classic model, a stable match always exists and can be found

by the DA (Gale and Shapley, 1962). It is well known that the set of pairwise-

stable matches corresponds to the core of a related cooperative game (Roth and

Sotomayor, 1990). Later research largely discarded the connection with the core

in favor of pairwise-stability notions. When considering matching with an ini-

tial match (in which the intersection of pairwise stable and individually rational

outcomes may be empty), Pereyra (2013) and Guillen and Kesten (2012) gener-

alize pairwise-stability by partitioning claims between valid and invalid claims

and then removing all valid claims. This may be strongly inefficient (Combe and

Schlegel, 2024; Combe, Tercieux and Terrier, 2022), and hence a mechanism with

minimal envy is considered (Kwon and Shorrer, 2023). Although efficient, these

minimal envy mechanisms are inscrutable to participants: the designer allows

some claims but not others only because doing so minimizes some objective. My

paper advances this literature by reconnecting the initial back to the core, a more

interpretable solution. I both minimize envy as in Kwon and Shorrer (2023) but

also provide a clear definition of valid and invalid claims as in Pereyra (2013).

Research in school choice has made extensive use of both the DA and TTC.
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Abdulkadiroğlu and Sönmez (2003) suggests the Deferred Acceptance algorithm

from Gale and Shapley (1962) or the Top Trading Cycles algorithm from Shapley

and Scarf (1974) as desirable and implementable solutions. Both algorithms run

in polynomial time, are relatively easy to describe, and are strategyproof. The DA

is fair (no blocking pairs) while the TTC is efficient (Pareto efficient for the stu-

dents). A handful of researchers seek to combine or modify the two algorithms to

reconcile these properties, allowing certain priority violations. (Abdulkadiroğlu,

2011; Dur, Gitmez and Yılmaz, 2019; Kesten, 2006; Kwon and Shorrer, 2023;

Reny, 2022; Troyan, Delacrétaz and Kloosterman, 2020; Morrill, 2013b; Dur and

Morrill, 2017). Papers in this vein typically define a set of properties of a mecha-

nism (such as the allowable priority violations, efficiency, strategyproofness, etc.),

and then present a satisfactory algorithm, typically a variation of the DA or TTC.

My work complements this approach by an algorithm derived from first prin-

ciples rather than with specific objectives in mind. My approach draws from

cooperative game theory rather than emphasizing certain desirable properties of

the final allocation.

A connected branch of matching theory develops methods for matching with

minimum quotas. Schools are modeled as having both a maximum capacity for

students but also a minimum required quota of students. One approach is to

allow for wasted seats but not envy (Fragiadakis and Troyan, 2017). A separate

approach uses an auxiliary “master list” (Ueda et al., 2012) or “precedence list”

(Fragiadakis et al., 2016; Hamada et al., 2017) as a means to break ties: if two

students wish to take an empty seat but the minimum quota requires that only

one may do so, the list determines which worker can. The algorithms described in

both approaches typically either sacrifice efficiency (based on the DA) or fairness

(based on the TTC), and both require that all agents are mutually acceptable. I

develop both approaches by endogenizing the master list into the initial match

and not requiring any assumptions on preferences. Although a master list is
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natural in some applications, whether a master list or the initial match is more

appropriate depends on the application.

Surprisingly, no authors have connected matching with minimum quotas and

the matching with an initial match. I combine these subfields with the observa-

tion that, if the initial match provides a guarantee for both workers and firms,

then minimum quotas are the special case when every firm is assigned workers

equal to its minimum quota in the initial match. The initial match provides a

different justification for why some blocking pairs are allowable but others are

not, one which I think applies well to school choice.

Finally, the paper closest in spirit to ours is Abdulkadiroğlu and Sönmez

(1999), “House Allocation with Existing Tenants.” Their model is one-sided,

and they show that a hybrid of the Serial Dictatorship algorithm and the TTC

algorithm provides an efficient improvement over the initial match. I present a

two-sided model with a hybrid algorithm between the DA and the TTC. Although

my models are different, my approach is remarkably similar to theirs.

6.2 Applications

The PE can unify out-of-match residencies with the NRMP, creating a larger over-

arching match that nests both and guarantees Pareto efficiency while allowing for

early matches. It is well-known that a fraction of medical residencies are offered

independently of the centralized clearinghouse operated by the NRMP. These

out-of-match residency programs entice prospective residents to sign binding

contracts prior to the operation of the NRMP because these contracts provide

guarantees to risk-averse residents. Because the rules of the NRMP forbid res-

idents from participating if they have already accepted an out-of-match offer,

these two markets operate independently.12 The out-of-match offers introduce

12Recently, the NRMP has implemented the “All-In” policy in an attempt to curtail residency

programs from offering out-of-match residencies. The All-In policy requires that any residency
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inefficiency by dividing the market temporally. Under the PE, the out-of-match

market operates essentially unchanged: programs can entice residents with early

offers. However, if the NRMP uses the Propose-Exchange algorithm, the resi-

dents and programs who have already formed contracts are allowed to partici-

pate as agents under an initial match. Remark 1 guarantees that the final match

is Pareto efficient. A similar construction can be used to integrate Early Decision

agreements into the regular college admission cycle.

The PE also allows for asymmetrical obligations, such as professional sports

contracts or tenured positions, which bind participants unequally. For example,

an athlete’s contract with a team may allow the team to trade the athlete to an-

other without the athlete’s consent, but the athlete cannot “trade” his team with-

out the team’s consent. Similarly tenured professor or teacher’s contract allows

her leave her institution unilaterally, restricts the institutions ability to remove

her; see Combe, Tercieux and Terrier (2022) for an application to the French pub-

lic school system. To incorporate this one-way obligation into the PE, I modify

the participants’ preferences. For the professor w tenured at (that is, initially

matched to) institution f , I modify f ’s preference ≿f by moving w to the bottom

of ≿f . This guarantees that w is never required to remain at f , but always may

choose to do so. Without an initial match, the standard model is instead forced to

move w to the top of ≿f ; this achieves the same result (w can always match to f ),

but suffers from inefficiency (Pereyra, 2013). The one-way contracts that allow

for trades, as in professional sports, can similarly be included under additional

assumptions.13

program participating in the NRMP offer residencies exclusively through the NRMP.
13For instance, a “tradable” contract can be included through modifying the athlete’s prefer-

ence by putting the team and being unmatched at the bottom of the preference. Therefore, the

athlete is always matched to a team, but the identity of the team can change. However, there is a

tension: if the athlete can express a preference for being unmatched, then the team can terminate

the athlete at will. Hence, in this model it is essential that the athlete can only be traded to a set
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The initial match can also be leveraged to achieve minimum quotas that bal-

ance individual preferences and institutional needs. Examples of minimum quo-

tas are minimum enrollment at a school or in a class, or guarantees that some

“rural” hospitals are matched to residents. For instance, a minimum quota of

students may be required for a school to operate or for a class to be offered. The

PE can incorporate these quotas by using the initial match to assign the mini-

mum number of students to the school or class. By then modifying the school’s or

class’s priority order (preferences) over students by moving the initially assigned

students to the bottom, just above being unmatched, the designer guarantees that

the school or class will enroll at least its minimum quota. The initial assignments

are only binding if no other student desires the school or class. In this way, the

initial match requires the minimal restriction on students’ choices while meet-

ing the institutional objective. The agreeable core provides a clear justification

for why some students’ choices are restricted. If a restricted student would like

to attend another school, then at least one school would not meet its minimum

quota or some student would be harmed.

6.3 Future Directions

The many-to-one setting introduces complex constraints because firms partici-

pating in an agreeable coalition must consider multiple binding agreements. The

motivation behind my focus on one-to-one matching is driven by two compet-

ing models of a firm in many-to-one markets. In the first model, each firm is

modeled as a collection of unit-demand sub-firms, each endowed with the mas-

ter firm’s preference over individual workers. This is the model used in most

of teams which he prefers to being unmatched.

Again, there is a limit to who can have tradable contracts. If a team is allowed to trade an athlete,

then the PE algorithm must have the teams propose and point. This precludes any athlete from

trading her team. In professional sports this is a reasonable assumption, but caution is needed in

more general applications.
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applications because eliciting a single ranking over workers from each firm is

easier than a preference over sets of workers. The agreeable core then treats each

sub-firm as an individual agent. A worker is initially matched to a single sub-

firm, and he must include that sub-firm in any agreeable coalition. This model

straightforwardly extends the one-to-one theory, and the same results hold.14 In

the second model, each firm is treated as an agent with a preference over sets of

workers. Even in the classic model without an initial match, restrictions such as

substitutability need to be placed on firm preferences to guarantee existence.15

Beyond the question of existence, the requirement that ν(C) = C for a coalition C

blocking with match ν implies that the size of an agreeable blocking coalition in-

creases dramatically. For example, if a firm seeks to join a coalition, that coalition

must include all of its initial workers (who themselves are possibly matched to

other firms) and all of the workers it will match to (who themselves may be ini-

tially matched to other firms). In a market with many workers initially matched,

agreeable coalitions quickly must contain almost every agent in the model. The

usefulness of the agreeable core in this context is unclear, and adapting it to these

environments is a future avenue of research.

The agreeable core can provide insights into the formation of the initial match

µ0. The model is agnostic as to how µ0 is determined. It could be interesting to

use the agreeable core or the Propose-Exchange algorithm in combination with

a model of the formation of µ0 to understand pre-matching dynamics. Because

the initial match is instrumental in the PE, developing a theory of pre-match

formation could be insightful for other market-design applications. Theorem 4

addresses one such question, but more questions abound.

14There are some interesting additional questions in this environment, such as how a worker

should construct his preference over two identical sub-firms which are initially matched to differ-

ent workers, and whether a firm could rearrange the initial matches of its sub-firms to construct

a new agreeable and blocking coalition?
15See Echenique and Oviedo (2004) for a unified treatment of the many-to-many case.
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A Omitted Proofs

Throughout the appendix I abuse notation and write a ∈ e to mean that either the

first or second coordinate of e is a.

Lemma A.1. If P is a complete and alternating path in (A,µ0 ∪ µ∪ I(µ)), then every

agent contained in P is in exactly one edge from µ0 and one edge from µ∪ I(µ).

Proof. Let P = (e1, . . . , en) be a complete and alternating path in (A,µ0∪µ∪I(µ)) and

let a be contained in P . If n = 2, then the statement is trivial because completeness

implies every a ∈ P is in both e1 and e2 and P alternating implies that one of {e1, e2}

is in µ0 and the other is in µ∪ I(µ). Hence, let n ≥ 3.

Again, if a ∈ ek∩ek+1 for k ≥ 1 then the statement is true because completeness

implies ek and ek+1 are the only edges in P containing a, both ek and ek+1 cannot be

from µ0 by construction, and P alternating implies that both ek, and ek+1 cannot

be from µ∪I(µ). Therefore, one of {ek , ek+1} is from µ0 and the other from µ∪I(µ).

Hence, let a ∈ e1 ∩ en and thus P is cyclic. Let a be a worker; the argument is

symmetric if a is a firm.

Because there is a bijection16 between the workers and firms contained in P

and every agent in P is contained in two edges of P , n is even. Therefore, if e1 ∈ µ0

then en ∈ µ∪ I(µ), and if e1 ∈ µ∪ I(µ) then en ∈ µ0. This proves the result.

Proof of Proposition 1: Let µ be individually rational.

16namely, µ0
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For the (⇒) direction: I prove the contrapositive; that is, if µ admits a blocking

path, then µ is not in the agreeable core. Let P = (e1, . . . , en) be a blocking path in

(A,µ0 ∪µ∪ I(µ)). Note that µ0(P ) = P and µP (P ) = P .

By the definition of I(µ), it follows that µP ≿P µ. Because P is blocking, there

is an edge e in P that is also in I(µ). Hence, both agents in e strictly prefer µP to µ.

Therefore, P is an agreeable blocking coalition and µ is not in the agreeable core.

For the (⇐) direction: I prove the contrapositive; that is, if µ is not in the

agreeable core then µ admits a blocking path. Let µ be not in the agreeable core.

Then there exists an agreeable blocking coalition C that blocks µ through ν.

Let a1 be an agent in C such that ν(a1) ≻a1
µ(a1); such an agent exists by the

definition of a blocking coalition. I will construct a path P from a1 by iteratively

adding alternating edges from µ0 and ν to {a1,ν(a1)}, first with increasing indices

and then with decreasing indices. I assume that a1 ∈ W ; the other case follows

from a symmetric argument.

Starting with e1 ≡ (a1,ν(a1)) and P1 ≡ (e1), do the following iteratively. Choose

an edge ek+1 from µ0 or ν that is not already present in Pk such that the second

coordinate of ek is the first coordinate of ek+1, then define Pk+1 by appending ek+1

to Pk. Continue until no more edges may be added in this way. Finally, repeat the

same process starting from e1, but prepending edges e0, e−1, . . . to Pk.

Observe that P is a path in (A,µ0∪µ∪ I(µ)) because ν ≿C µ. Next, observe that

because every agent in P is contained in at most two edges (one from µ0 and the

other form ν); every agent in P is contained in at least two edges because edges

are added until no more can be added without including repeats and therefore P

is complete. Also, P is alternating because e2k ∈ µ0 and e2k−1 ∈ ν. Finally, observe

that e1 ∈ I(µ). Therefore, P is a blocking path of µ. Therefore (A,µ0 ∪ µ ∪ I(µ))

contains a blocking path, completing the proof.

Introduction to the proofs of Lemma 1 and Proposition 2:

Before proving Lemma 1, I first introduce some notation and a short result:
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Definition A.1. I say that loop e = (a,a) is a proposal source if either

1(a) : (a,a) ∈ µ0 and a ∈W , or

1(b) : (a,a) < µ0 and a ∈ F.

I say that loop e = (a,a) is a proposal sink if e in not a proposal source; that is, if

either

2(a) : (a,a) < µ0 and a ∈W or

2(b) : (a,a) ∈ µ0 and a ∈ F.

A straightforward parity argument shows that if P = (e1, . . . , en) is a complete,

alternating, and acyclic path in (A,µ0∪µ∪ I(µ)), then e1 is a proposal source and

en is a proposal sink.

Lemma A.2. Let P = (e1, . . . , en) be a complete, alternating, and acyclic path in (A,µ0∪

µ∪ I(µ)) with n ≥ 3. Then e1 is a proposal source and en is a proposal sink.

Proof. Because P is acyclic and complete, e1 and en are both loops. Let e1 = (a1, a1)

and en = (an−1, an−1). Similarly, let e2 = (a1, a2) and en−1 = (an−2, an−1). Because

n ≥ 3, a1 , a2 and an−2 , an−1.

Consider the following cases:

1. a1 ∈ W : Then because there are no edges between two distinct workers,

it follows that a2 ∈ F. Therefore, e2 ∈ µ ∪ I(µ). This implies that e1 ∈ µ0.

Therefore e1 is a proposal source.

2. a1 ∈ F: Then because there are no edges between two distinct workers, it

follows that a2 ∈ W . Therefore, e2 ∈ µ0. This implies that e1 ∈ µ ∪ I(µ).

Therefore e1 is a proposal source.

Symmetric arguments show that en is a proposal sink.
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Proof of Lemma 1:

Suppose (toward a contradiction) that P = (e1, . . . , en) is an acyclic blocking

path of µ1. Because P is acyclic and complete, e1 and en are both loops and n ≥ 3.

By Lemma A.2, e1 is a proposal source and en is a proposal sink. Let

e1 = (a1)

e2 = (a1, a2)

...

en−1 = (an−2, an−1)

en = (an−1)

I argue by induction that every worker ak ∈ P makes a proposal during the

Propose algorithm. Because every agent contained in P weakly prefers µP to µ1, it

follows that every worker contained in P who proposes proposed to his µP -partner.

In my base case I show that the worker with the lowest index contained in P

proposes during the Propose algorithm. There are two possibilities:

1. a1 is a worker: Because e1 is a proposal source by definition µ0(a1) = a1.

Hence a1 begins the Propose algorithm activated. Therefore, a1 proposes

during the Propose algorithm.

2. a1 is a firm: Because e1 is a proposal source, by definition µ0(a1) , a1. There-

fore µ0(a1) = a2. Because a1 prefers µP to µ0 and µP (a1) = a1 because e1 is

loop, it follows that a2 is activated at the start of the Propose algorithm.

Therefore, a2 proposes during the Propose algorithm.

For the inductive step, suppose ak−1 ∈ W makes a proposal; I will show that

the worker with the next highest index makes a proposal. If k − 1 ≥ n − 2, then

ak−1 is the worker with the highest index and the claim is vacuous; therefore,

suppose k − 1 < n− 2. Because µP (ak−1) = ak, it follows that ak−1 proposes at some

point to ak. Because µ1 is individually rational and µ0(ak) = ak+1, it follows that
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ak weakly prefers ak−1 to ak+1. Therefore ak+1 is activated at some point and thus

ak+1 makes at least one proposal during the Propose algorithm, concluding my

inductive argument.

Next, I show that an agent contained in a proposal sink never rejects a pro-

posal from their µP -partner. If an−1 is a worker, then he never rejects a proposal

from himself. If an−1 is a firm, then µ0(an−1) = an−1 by definition. Because an−1

prefers µP to both µ0 and µ1 and because an−1 receives no proposals she prefers

to µ1(an−1) (by construction of µ1), it follows that an−1 does not reject a proposal

from µP (an−1).

Finally, I show that no worker contained in P is rejected by his µP -partner. To

see this, suppose (toward a contradiction) that k −1 is the largest index such that

ak−1 is rejected by µP (ak−1). Because a proposal sink does not reject a proposal by

his or her µP -partner, it follows that k−1 < n−2 (that is, ak−1 is not one of the last

two agents in the path).

Because ak prefers ak−1 to µ1(ak) and yet ak rejects ak−1, it must be that µ0(ak) =

µ1(ak) (by construction of µ1). Therefore ak is matched to ak+1 by both µ0 and µ1.

Because matches are bijective, I have µ1(ak+1) = µ0(ak+1) = ak. Consider that,

because P is a complete and n ≥ 3, it follows that µP (ak+1) , µ1(ak+1). Therefore

ak+1 must be rejected by µP (ak+1), a contradiction to my supposition that k − 1 is

the largest index for which a worker is rejected by his µP -match.

Therefore, because no worker in P is rejected by his µP -partner, it follows that

µP agrees with µ1 on P . Hence, every edge in P from µ1 ∪ I(µ1) is from µ1. But

because P is a blocking path, it must contain an edge from I(µ1). Because µ ∩

I(µ1) = ∅, this is a contradiction. Therefore no blocking path of µ1 is acyclic.

Proof of Proposition 2: I say that a proposal order is a function that, at every step

of the Propose phase, indicates which worker makes the next proposal. Let T and

T ′ be two proposal orders, and let the output of the Propose stage using order T
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be µ and using T ′ be µ′. Suppose (toward a contradiction) that µ , µ′. Let

U = {w ∈W : µ(w) , µ′(w)}

V = {w ∈W : w proposes under both T and T ′}.

There are two cases:

1. U ∩V , ∅: WLOG, there is some worker in U ∩V who strictly prefers µ′ to

µ. Letw be the first such worker who is rejected by f ′ ≡ µ′(w) in the Propose

stage under T . Because f ′ is w’s µ′-partner, this implies that f ′ prefers w to

being unmatched. Therefore, f ′ must reject w in favor of some w∗. Because

f ′ is w’s µ′-partner, this implies that w∗ does not propose to f ′ under T ′.

Becausew∗makes a proposal under T , it follows that there is some sequence

of workers w1, . . . ,wn−1,w
∗ ≡ wn such that w1 or µ0(w1) is a proposal source,

and each wk makes the first proposal to µ0(wk+1) under T . Let k be the

greatest index such that wk ∈ V . Then it follows that wk strictly prefers µ′

to µ. Therefore, wk must be rejected by µ′(wk) earlier than w is rejected by

f ′ under T , a contradiction.

2. U ∩ V = ∅: Observe that U is nonempty by supposition. Let w∗ ∈ U and

WLOG let w∗ strictly prefer µ to µ′. Thus, w∗ must make a proposal under

T . It follows that there is some sequence of workers w1, . . . ,wn−1,w
∗ ≡ wn

such that w1 or µ0(w1) is a proposal source, and each wk makes the first

proposal to µ0(wk+1) under T . Observe that w1 ∈ V . Furthermore, if wk ∈ V ,

then µ(wk) = µ′(wk) by supposition. Hence, wk+1 makes a proposal under

both T and T ′. Therefore, wk+1 ∈ V . It follows that w∗ ∈ V , a contradiction

to the supposition that U ∩V is empty.

Therefore, µ = µ′.

Proof of Lemma 2: Suppose (toward a contradiction) P = (e1, . . . en) is a cyclic
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blocking path in (A,µ0 ∪ µ2 ∪ I(µ2)). Because there is a bijection17 between the

workers and firms contained in P , n is even. Define m ≡ n
2 .

From P (after a possible relabeling) define a vector of agents (a1, a2, . . . , an ≡ a0)

such that (ak−1, ak) = ek−1, a1 ∈W , and e1 ∈ I(µ2). Because P is alternating, every

odd agent is a worker and every even agent is a firm.

I first show that every agent in P is active in the Exchange stage. To see this,

suppose (toward a contradiction) that some worker ak in P is not active during

the Exchange stage. Then ak makes a proposal during the Propose stage to ak+1.

Therefore, ak+2 makes a proposal during the Propose stage. I can iterate this ar-

gument to show that every worker in P makes a proposal during the Propose

stage. Because P is a blocking path, each firm in P prefers her respective pro-

posal to her µ1-partner. Because ak−2 is rejected by ak−1, it necessarily follows

that µ1(ak) = ak−1. Therefore, ak is active in the Exchange stage, a contradiction.

Therefore, every agent in P is active during the Exchange stage.

Let tk be the iteration of the while . . . do loop of the Exchange algorithm that

ak sits down in.18 During the Exchange algorithm every worker a2k−1 points to

firm a2k; hence, firm a2k sits down weakly earlier than worker a2k−1. In symbols,

t2k−1 ≥ t2k for all 1 ≤ k ≤m. Because e1 ∈ I(µ2), it follows that t1 > t2. Therefore,

m∑
k=1

t2k−1 >
m∑
k=1

t2k

However, every worker a2k+1 sits down at the same time firm a2k sits down.

In symbols, t2k+1 = t2k for all 1 ≤ k ≤m. Therefore,

m∑
k=1

t2k+1 =
m∑
k=1

t2k

Because
∑m
k=1 t2k+1 =

∑m
k=1 t2k−1, I reach a contradiction.

17namely, µ0
18That is, if ak sits down on the fourth iteration of the while loop, then tk = 4.
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Proof of Proposition 3: For the first claim, suppose (toward a contradiction) that

w and f are both free agents in µ who also both prefer each other to µ(w) and

µ(f ), respectively. I construct a blocking path in (A,µ0∪µ∪ I(µ)), a contradiction

to the supposition that µ is in the agreeable core.

Because w is a free agent in µ, w lies on an acyclic, complete, and alternating

path Pw of (A,µ0,µ). Rewrite Pw such that

Pw =
(
e1, . . . , ek−1,

(
µ0(w),w

)
,
(
w,µ(w)

)
, . . .

)
Similarly, there is a complete and alternating Pf such that

Pf =
(
. . . ,

(
µ(f ), f

)
,
(
f ,µ0(f )

)
, ek+1, . . . , en

)
There are two cases:

1. Pw and Pf do not intersect: Then(
e1, . . . , ek−1,

(
w,f

)
, ek+1, en

)
is a blocking path of µ.

2. Pw and Pf do intersect: Then let i be the greatest index less than k such that

ei is in Pf . Let ej be the edge in Pf such that ei = ej . Therefore the path(
ej , . . . , ek−1,

(
w,f

)
, ek+1, . . . ej−1

)
is a blocking path of µ.

In either case there is a blocking path of µ. But then µ is not in the agreeable core,

a contradiction.

For the second claim I can repeat the argument from the first claim, substitut-

ing the edge (w,w) for {w,µ(w)} in path Pw and (f , f ) for {µ(f ), f } in path Pf .

Lemma A.3. Let µ and ν be structurally similar matches in the agreeable core. Then

(µ∨ ν)(w) ∈ F if and only if µ(w) ∈ F or ν(w) ∈ F. Similarly, (µ∨ ν)(f ) ∈ W if and

only if µ(f ) ∈W and ν(f ) ∈W . A symmetric result holds for ∧.
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Proof. Both statements clearly hold for every agent that is not free in µ (and ν

because µ and ν are structurally similar). Hence, I show that the statements hold

for the free agents in µ.

For the first statement:

• For the (⇒) direction: I show that if µ(w) < F and ν(w) < F, then (µ∨ν)(w) < F.

Then µ(w) = ν(w) = w, which implies (µ∨ ν)(w) = w. Thus (µ∨ ν)(w) < F.

• For the (⇐) direction: I show that if µ(w) ∈ F or ν(w) ∈ F, then (µ∨ν)(w) ∈ F.

To see this, note that if µ(w) = f or ν(w) = f , then w strictly prefers f to

being unmatched (w) by Proposition 3. Therefore, µ ∨ ν cannot leave w

unmatched and therefore (µ∨ ν)(w) ∈ F.

For the second statement:

• For the (⇒) direction: I show that if either µ(f ) <W or ν(f ) <W , then (µ∨

ν)(f ) < W . Then µ(f ) = f or ν(f ) = f . By Proposition 3, f weakly prefers

both µ(f ) and ν(f ) being unmatched. By the definition of ∨, (µ∨ ν)(f ) = f .

Therefore, (µ∨ ν)(f ) <W .

• For the (⇐) direction: I show that if µ(f ) ∈W and ν(f ) ∈W , then (µ∨ν)(f ) ∈

W . Then {µ(f ),ν(f )} ⊆W . Therefore (µ∨ ν)(f ) ∈W .

This completes the proof.

Proof of Lemma 3: I draw my proof from the proof of Theorem 2.16 in Roth

and Sotomayor (1990). I show that µ ∨ ν is a match; the argument for µ ∧ ν is

symmetric.

Because the free agents are the same in µ and ν, I need only to show that µ∨ν

is a match on the free agents of µ and ν; all other matches are left unchanged

because µ and ν are structurally similar. It is immediate from the definition of

∨ that items 1 and 2 from the definition of a match hold. That is, I only need
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that (µ∨ ν)(a) = b ⇐⇒ (µ∨ ν)(b) = a. Of course, if a = b then the statement is

tautological; hence, I prove for w ∈W and f ∈ F:

(µ∨ ν)(w) = f ⇐⇒ (µ∨ ν)(f ) = w.

For the (⇒) direction: I show that (µ ∨ ν)(w) = f implies (µ ∨ ν)(f ) = w. I

consider the case when µ(w) = f ; the other case is symmetric. Suppose (toward a

contradiction) that (µ∨ ν)(f ) , w. Then (µ∨ ν)(f ) = ν(f ). Then f strictly prefers

w to ν(f ) and w strictly prefers f to ν(w), so w and f is a blocking pair of ν, a

contradiction by Proposition 3. This completes this direction.

For the (⇐) direction: I show that (µ∨ν)(f ) = w implies (µ∨ν)(w) = f . I define

a sequence of sets, then study their cardinality. Let

W ′ ≡ {w ∈W : (µ∨ ν)(w) ∈ F}

= {w ∈W : µ(w) ∈ F or ν(w) ∈ F} ∵ Lemma A.3.

and

F′ ≡ {f ∈ F : (µ∨ ν)(f ) ∈W }

= {f ∈ F : µ(f ) ∈W and ν(f ) ∈W } ∵ Lemma A.3.

Observe the following relations:

|F′ | = |µ(F′)| ∵ µ is a match

µ(F′) ⊆W ′ ∵Definition of F′ and W ′

Therefore |F′ | ≤ |W ′ |. Similarly,

|W ′ | = |(µ∨ ν)(W ′)| ∵ (⇒) implication

(µ∨ ν)(W ′) ⊆ F′ ∵ (⇒) implication

Therefore |W ′ | ≤ |F′ | and thus |W ′ | = |F′ |. Therefore |(µ∨ ν)(W ′)| = |F′ | and thus

(µ∨ ν)(W ′) = F′.
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The final string of implications is as follows: If (µ∨ ν)(f ) ∈W , then f ∈ F′. If

f ∈ F′, then there exists w in w ∈W ′ such that (µ∨ ν)(w) = f . This completes this

direction.

Therefore, µ∨ ν satisfies item 3 from the definition of a match and thus µ∨ ν

is a match.

Lemma A.4. Let µ and ν be structurally similar matches in the agreeable core. Then

µ∨ ν ⊆ µ∪ ν and I(µ∨ ν) ⊆ I(µ)∪ I(ν). The same holds for µ∧ ν.

Proof. By construction, µ∨ν only contains matches from µ and ν and thus µ∨ν ⊆

µ∪ ν.

Let {w,f } ∈ I(µ∨ ν) and let AF be the free agents in µ (and ν because µ and ν

are structurally similar). There are three cases:

1. |{w,f }∩AF | = 0: Then (µ∨ν)(w) = µ(w) and (µ∨ν)(f ) = µ(f ) by construction,

so {w,f } ∈ I(µ).

2. |{w,f } ∩AF | = 1: Suppose that w ∈ AF ; the other case is symmetric. Then

either (µ ∨ ν)(w) = µ(w) or (µ ∨ ν)(w) = ν(f ); again, let (µ ∨ ν)(w) = µ(w)

and the other case is symmetric. Then (µ∨ ν)(f ) = µ(f ) by construction, so

{w,f } ∈ I(µ).

3. |{w,f } ∩AF | = 2: This contradicts Proposition 3 and thus cannot happen.

In the cases that do not lead to a contradiction I see that {w,f } ∈ I(µ)∪I(ν), which

completes the proof.

Definition A.2. A crossing edge at µ contains both a free agent and an agent who

is not free at µ.

Lemma A.5. Let µ and ν be structurally similar matches in the agreeable core. Then

any blocking path of µ∨ ν must contain two crossing edges at µ. All crossing edges at

µ of any blocking path of µ∨ ν are contained in either I(µ) or I(ν).

A symmetric result holds for µ∧ ν.
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Proof. Let AF denote the free agents in µ (and ν because µ and ν are structurally

similar), and let P be a blocking path of µ∨ ν.

I first prove that all crossing edges at µ of any blocking path of µ ∨ ν are

contained in either I(µ) or I(ν). To see this, let (a,b) ∈ P be a crossing edge with

a ∈ AF and b ∈ A\AF . Because µ0(AF) = AF , it follows that (a,b) ∈ µ∨ ν ∪ I(µ∨ ν).

Because µ(AF) = AF and ν(AF) = AF by construction it follows that {a,b} < µ∨ ν.

Therefore (a,b) ∈ I(µ∨ ν).

Next, I show that P ⊈ AF and P ⊈ A\AF . To see this, consider both cases

(toward a contradiction in each case):

1. Suppose P ⊆ AF : Then exists an edge e in P such that e ∈ I(µ ∨ ν). By

Lemma A.4, e ∈ I(µ) (the other case is symmetric). If e = (w,f ), then e

constitutes a blocking pair and contradicts Proposition 3. If e = (a,a), then a

strictly prefers being unmatched to µ and contradicts Proposition 3. There-

fore, P ⊈ AF .

2. Suppose P ⊆ A\AF : Note that µ∨ ν agrees with µ on A\AF . If P blocks µ∨ ν

then P blocks µ, a contradiction to the supposition that µ is in the agreeable

core. Therefore, P ⊈ A\AF .

Therefore, P intersects both A and A\AF . By the definition of a path, there exists

some crossing edge at µ in P .

Third, to see that two crossing edges at µ exist, suppose not. Let (a,b) be

the crossing edge at µ in P such that a ∈ AF and b < AF . As observed earlier,

(a,b) ∈ I(µ ∨ ν). By Lemma A.4, it follows that (a,b) ∈ I(µ) (the other case is

symmetric). Suppose that a ∈ W ; the other case is symmetric. Then P may be

written

P = (

contained in AF︷                   ︸︸                   ︷
e1, . . . , ek−1, (µ0(a), a), (a,b),︸︷︷︸

contained in I(µ)

contained in A\AF︷   ︸︸   ︷
ek . . . , eK ).
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Note that every edge from ek to eK exists in (A,µ0 ∪µ∪ I(µ)) because µ∨ ν agrees

with µ for these agents. Because a ∈ AF , there is an alternating, complete, and

acyclic path P a in (A,µ0 ∪µ∪ I(µ)) such that

P a = (ea1, . . . , e
a
l−1, (µ0(a), a), (a,µ(a)), eal . . . , e

a
L).

Because µ0(AF) = AF and µ(AF) = AF by construction, it follows that every agent

in P a is in AF . Observe that the path

P ∗ = (ea1, . . . , e
a
l−1, (µ0(a), a), (a,b), ek . . . , eK ).

is a blocking path of µ, a contradiction. Hence, there are at least two edges that

intersect both AF and A\AF .

Proof of Theorem 2: I show that µ ∨ ν is in the agreeable core; the argument

for µ∧ ν is symmetric. By Lemma 3, µ∨ ν is a match. Because µ and ν are both

individually rational, µ∨ν is individually rational. The remaining step is to show

that there are no blocking paths of µ∨ ν.

Suppose (toward a contradiction) that µ∨ ν is blocked by an agreeable coali-

tion. By Proposition 1, there is a blocking path P of µ∨ ν. Let AF denote the free

agents in µ (and ν because µ and ν are structurally similar).

By Lemma A.5, there are two crossing edges at µ in P , and both of these is in

I(µ∨ ν). There are two cases:

1. There exists two crossing edges ek and eK at µ in path P such that the edges

ek+1, . . . , eK−1 (if any) are contained within A\AF . Let {w,f } = ek and (w′, f ′) =

eK with ak , aK ∈ AF and bk ,bK ∈ A\AF . Because µ∨ ν ≿W µ and µ∨ ν ≿W ν,

it follows that one of (w,f ) ∈ I(µ) and (w,f ) ∈ I(ν). By Lemma A.4, let

(w′, f ′) ∈ I(µ) (the other case is symmetric).

Because w ∈ AF , there exists an acyclic, complete, and alternating path P w

of (A,µ0 ∪µ∪ I(µ)):

P w = (ew1 , . . . , e
w
i−1, {µ0(w),w}, {w,µ(w)}, . . .).
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Similarly because f ′ ∈ AF :

P f
′
= (. . . , (µ(f ′), f ′), (f ′,µ0(f ′)), ef

′

j−1, . . . , e
f ′

1 ).

Then the path

P ∗ = (ew1 , . . . , e
w
i−1, (µ0(w),w),︸                     ︷︷                     ︸
P w

P︷                             ︸︸                             ︷
(w,f ), ek+1, . . . , eK−1, (w

′, f ′), (f ′,µ0(f ′)), ef
′

j−1, . . . , e
f ′

1︸                      ︷︷                      ︸
P f
′

).

is a blocking path of µ, a contradiction to the supposition that µ is in the

agreeable core.

2. There does not exist two crossing edges ek and eK at µ in path P such that the

edges ek+1, . . . , eK−1 (if any) are contained within A\AF . Let (a,b) be a crossing

edge of µ of P with a ∈ AF . Let b ∈ W ; the other case is symmetric. The

supposition implies that P must be acyclic and hence can be written

P = ( e1, . . . , ek−1,︸       ︷︷       ︸
contained in A\AF

(b,a), (a,µ0(a)), . . .).

Because a ∈ AF , there exists an acyclic, complete, and alternating path P a of

(A,µ0,µ∪ I(µ)):

P a = (. . . , (µ(a), a), (a,µ0(a)), eai−1, . . . , e
a
1).

Then the path

P ∗ = (

P︷       ︸︸       ︷
e1, . . . , ek−1, (a,µ0(a)), eai−1, . . . , e

a
1︸                  ︷︷                  ︸

P a

).

is a blocking path of µ because µ and µ∨ν agree on the agents in A\AF . This

is a contradiction to the supposition that µ is in the agreeable core.

Therefore, there are no blocking paths of µ∨ ν, which implies that µ∨ ν is in the

agreeable core.
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Proof of Proposition 4: Consider the following counterexample. There are three

workers denoted by the numbers 1, 2, and 9, and three firms denoted by the

letters A, B, and Z. Workers 1 and 2 are reference matched to A and B, respec-

tively, while worker 9 and firm Z are each reference matched to him or herself.

Formally:

µ0(1) = A µ0(2) = B µ0(9) = 9

µ0(A) = 1 µ0(B) = 2 µ0(Z) = Z

A profile of preferences ≻ and an alternate profile of worker preferences are

given in Figure 8. I use the circles to indicate match µ◦, the squares to indicate

match µĲ, and ˜ to indicate µ̃.

µ◦(1) = B µ◦(2) = A µ◦(9) = Z

µ◦(A) = 2 µ◦(B) = 1 µ◦(Z) = 9

µĲ(1) = A µĲ(2) = Z µĲ(9) = B

µĲ(A) = 1 µĲ(B) = 9 µĲ(Z) = 2

µ̃(1) = A µ̃(2) = B µ̃(9) = Z

µ̃(A) = 1 µ̃(B) = 2 µ̃(Z) = 9

I keep the firm preference profile fixed at ≻A, ≻B, and ≻Z for the firms and only

specify preferences for the workers.

To prove the result, suppose that ψ is not preference manipulable. I consider

the sequence of preference profiles P1, P2, P3, and P4 formed by swapping ≻′1 for

≻1, then ≻′2 for ≻2, and then ≻′9 for ≻9. I use the non-manipulability of ψ to

restrict ψ to a unique match in each case. I then show that at P3 worker 9 can

profitably deviate to ≻′9, a contradiction to the non-manipulability of ψ.

First, I limit the scope of matches I consider. Consider any µ and any Pj .
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≻′1 ≻2 ≻9

B◦ ZĲ BĲ

Z A◦ Z◦

AĲ B

≻′1 ≻′2 ≻9

B◦ ZĲ BĲ

Z◦ A Z̃

ÃĲ B̃

≻1 ≻2 ≻9

B◦ Z B

Z A◦ Z◦

AĲ B

≻′1 ≻′2 ≻′9

B ZĲ BĲ

Z◦ A Z

AĲ B

≻A ≻B ≻Z

A 9Ĳ 9̃◦

2◦ 1◦ 1

1̃Ĳ 2̃ 2Ĳ

P1 P2 P3 P4

Figure 8: Tables provide preferences ≻ and alternate worker preferences ≻′. A

grayed-out firm in ≻′ indicates that the worker matching to himself more than to

that firm. If the table does not specify a preference over an alternative, then they

are worse than every alternative listed.
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• If A ≻1 µ(1) then 1 strictly prefers µ0(1) to µ(1), hence µ is not in the agree-

able core; the same holds for B ≻2 µ(2), 2 ≻B µ(B), and 1 ≻A µ(A).

• If j , 4 and Z ≻9 µ(9), then {9,Z} is an agreeable coalition that blocks µ.

• If j = 4 and Z ≻9 µ(9), then µ in the agreeable core implies that µ(1) , Z and

hence B ≻9 µ(9) implies that {2,9,B,Z} is an agreeable coalition that blocks

µ; hence, if µ is in the agreeable core then µ(9) = B.

• If µ(1) = Z and µ(2) = A, then for P1 {1,A,Z} is an agreeable blocking coali-

tion and for P2, P3, and P4 A ≻′1 Z. Hence for all Pj µ(1) = Z and µ(2) = A

imply that µ is not in the agreeable core.

It follows that every worker is matched to a firm, and thus every firm is matched

to a worker. Therefore, any match in the agreeable core only occurs between

agents who are listed on each other’s preferences in Figure 8. An exhaustive

search reveals that µ◦, µĲ, and µ̃ are the only matches that meet these criteria.

For P1, the agreeable core is {µ◦} because:

✓ µ◦ is the output of the PE algorithm and hence is in the agreeable core.

✗ µĲ is blocked by the agreeable coalition {1,A,Z} with any deviation µ′ such

that µ′(1) = Z and µ′(A) = A.

✗ µ̃ is blocked by the agreeable coalition {1,2,A,B} with any deviation µ′ such

that µ′(1) = B and µ′(2) = A.

Hence, ψ(P1) = µ◦.

For preferences P2, the agreeable core is {µ◦,µĲ} because:

✓ µ◦ does not match any worker to a firm he dropped from his preference,

so every blocking coalition under these preferences forms under the prior

preferences.
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✓ µĲ is the output of the PE algorithm and hence is in the agreeable core.

✗ µ̃ is blocked by the agreeable coalition {1,2,A,B} with any deviation µ′ such

that µ′(1) = B and µ′(2) = A.

If ψ(P2) = µĲ, then consider the deviation by worker 1 of misreporting ≻1 at P2.

Because µ◦(1) ≻′1 µĲ(1), this is a profitable deviation. Therefore, because ψ is not

preference manipulable, ψ(P2) = µ◦.

For preferences P3, the agreeable core is {µĲ, µ̃} because:

✗ µ◦ matches worker 2 to firm A, which violates the requirement that µ(2) ≿2

B.

✓ µĲ is the output of the PE algorithm and hence is in the agreeable core.

✓ µ̃: Observe that Z cannot be strictly better off in any blocking coalition,

and thus 2 cannot be strictly better any blocking coalition. Furthermore,

any agreeable coalition that makes 1 strictly better off must include B and

hence, because the coalition is agreeable, 2. Therefore, any agreeable block-

ing coalition cannot make any worker strictly better off. Hence, µ̃ is also in

the agreeable core.

If ψ(P3) = µĲ, then consider the deviation by worker 2 of reporting ≻′2 at P2. Be-

cause µĲ(2) ≻2 µ
◦(2), this is a profitable deviation. Therefore, because ψ is not

preference manipulable, ψ(P3) = µ̃.

In this final step, I note that the core under P4 is the singleton µĲ. To see this,

observe that µ◦ and µ̃ each match a worker to a firm he lists below his reference

match, and therefore none of these three matches is in the agreeable core. µĲ is the

output of the PE algorithm and hence is in the agreeable core. However, consider

the deviation by worker 9 of reporting ≻′9 at P3. Because µĲ(9) ≻9 µ̃(9), this is a

profitable deviation. Therefore, ψ is preference manipulable, a contradiction.

Introduction to the proofs of Theorem 3:
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Lemma A.6. For any µ1, there is no w and f such that all three conditions are true:

1. w is active in the Propose stage; and

2. µ0(f ) , µ1(f ); and

3. (w,f ) is a blocking pair of µ1.

Proof. Toward a contradiction, suppose (w,f ) is such a pair. Because w is active

and w strictly prefers f to µ1(w), w makes a proposal to f . Because µ0(f ) , µ1(f )

and f strictly prefers w to µ1(f ), f does not reject the proposal from w. This is a

contradiction to the supposition that (w,f ) is a blocking pair. Therefore, no such

pair exists.

Proof of Theorem 3: Suppose (toward a contradiction) that w can profitably mis-

report≿′w but thatw is not active in both the≿′w-Propose and≿′w-Exchange stages.

First I consider the case when w is not active in the ≿′w-Propose stage, and then

the case when w is not active in the ≿′w-Exchange stage. Before continuing, I

note that w’s preferences do not affect whether w is active in the ≿w-Propose or

≿′w-Propose stages.

Suppose w is not active in the ≿′w-Propose stage. The rest of the proof fol-

lows directly from the non-manipulability of the Top Trading Cycles algorithm.

This is well-known in the literature; see Ma (1994) for one such proof, and foot-

note 4 of Dur and Ünver (2019) for a list of references to other proofs. This is a

contradiction to the supposition that w can profitably misreport ≿′w.

The remainder of the proof is built on the proof of the blocking lemma of

Roth and Sotomayor (1990).

For the remainder of the proof, suppose that w is active in the ≿′w-Propose

stage but not in the ≿′w-Exchange stage. Therefore, w is active in the ≿w-Propose

stage as well. Let µ′1 be the output of the ≿′w-Propose stage. Let W ′ be the set

of workers who strictly prefer µ′1 to µ1 and are active in the ≿w-Propose stage.
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By supposition, w ∈W ′, so W ′ is nonempty. Because µ1 is individually rational,

every worker in W ′ is active in the ≿′w-Propose stage but not active in the ≿′w-

Exchange stage.

Next, I show that there always exists a worker w∗ and firm f ∗ such that the

following four conditions hold:

1. w∗ is active in the ≿′w-Propose stage; and

2. µ0(f ∗) , µ′1(f ∗); and

3. (w∗, f ∗) is a blocking pair of µ′1; and

4. w∗ , w.

There are two cases:

1. µ′1(W ′) = µ1(W ′): First, I show that every w′ who is active in the ≿w-Propose

stage is also active in the ≿′w-Propose stage. To see this, note that there is a

sequence of workers w1, . . . ,wn ≡ w′ such that wk is acceptable19 to µ0(wk+1)

and wk is the first worker to propose to µ0(wk+1) in the ≿w-Propose stage.

Toward a contradiction, suppose that some workers in the sequence are not

active in the ≿′w-Propose stage, and let wk be the one with the lowest index.

Obviously, k , 1. By construction,wk−1 is active in the≿′w-Propose stage and

prefers µ′1 to µ1 because wk−1 does not propose to µ0(wk). By supposition,

µ′1(W ′) = µ1(W ′). Therefore, there is some acceptable w̃ ∈W ′ who proposes

to µ0(wk) in the ≿′w-Propose stage. Hence wk is active in the ≿′w-Propose

stage, a contradiction. Therefore w′ is active in the ≿′w-Propose stage.

Let F′ ≡ µ′1(W ′). Fix an arbitrary order of proposals and let f ∗ be the last

firm in F′ to receive a proposal from an acceptable worker in W ′ in the

≿w-Propose stage. Because µ′1 is individually rational, each worker in W ′ is

19That is, f ∗ prefers w̃ to µ0(f ∗).
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acceptable to her µ′1-partner. Because W ′ is nonempty and every worker in

W ′ makes a proposal in the ≿w-Propose stage, such a firm exists.

Because every worker in W ′ strictly prefers µ′1 to µ1 and is active in the ≿w-

Propose stage, every firm in F′ must have rejected at least one proposal from

an acceptable worker in W ′ in the ≿w-Propose stage (namely, the firm’s µ′1-

partner). Thus f ∗ was matched to some w∗ ∈W when she received this last

proposal and f ∗ rejects w∗. Note that w∗ cannot be in W ′; otherwise, after

being rejected by f ∗, w∗ would have proposed to another firm in F′ because

µ1(W ′) = F′. Hence, w∗ , w. Note that w∗ is active in the ≿w-Propose stage,

so he is also active in the ≿′w-Propose stage. This satisfies conditions 1 and

4.

Next, note that µ0(f ∗) , µ′1(f ∗) because µ1(f ∗) ∈ W ′ and no worker in W ′

is active in the ≿′w-Exchange stage (see earlier comment). This satisfies

condition 2.

Finally, note that f ∗ strictly prefers w∗ to µ′1(f ∗) because f ∗ must have re-

jected µ′1(f ∗) but w∗ was tentatively accepted immediately prior to f ∗ ac-

cepting µ1(f ∗) in the ≿w-Propose stage. Because w∗ is active in both the ≿w-

and ≿′w-Propose stages and w < W ′, it follows that w weakly prefers µ1 to

µ′1 Because w∗ strictly prefers f to µ1(w) and w weakly prefers µ1 to µ′1, it

follows that w∗ strictly prefers f to µ′1(w∗). Therefore, (w∗, f ∗) is a blocking

pair of µ′1. This satisfies condition 3.

This completes this case.

2. µ′1(W ′) , µ1(W ′): Fix an arbitrary order of proposals and let f ∗ be the first

firm in µ′1(W ′)\µ1(W ′) to receive a proposal from µ′1(f ∗) in the ≿′w-Propose

stage. Note that µ0(f ∗) , µ′1(f ∗) because µ′1(f ∗) ∈ W ′ and no worker in W ′

is active in the ≿′w-Exchange stage (see earlier comment). This satisfies

condition 2.
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Let w∗ ≡ µ1(f ∗). Note that w∗ <W ′ and thus w∗ , w. This satisfies condition

4.

Letw′ ≡ µ′1(f ∗). Note thatw′ proposes to f ∗ in the ≿w-Propose stage because

w′ ∈W ′. Therefore, w∗ is active in the ≿w-Propose stage.

Next, I show that w∗ is active in the ≿′w-Propose stage. To see this, note that

there is a sequence of workers w1, . . . ,wn ≡ w∗ such that in the ≿w-Propose

stage, wk is acceptable to µ0(wk+1) and wk is the first worker to propose

to µ0(wk+1). Toward a contradiction, suppose that some workers in the se-

quence are not active in the ≿′w-Propose stage, and let wk be the one with

the lowest index. Obviously, k , 1. By construction, wk−1 is active in the

≿′w-Propose stage and prefers µ′1 to µ1 because wk−1 does not propose to

µ0(wk). Therefore, wk−1 must propose to µ′1(wk−1) at an earlier step of the

≿′w-Propose stage than w′ proposes to f ∗, a contradiction to the supposition

thatw′ is the first such worker to do so. Hencewk is active in the≿′w-Propose

stage, a contradiction. Therefore w∗ is active in the ≿′w-Propose stage. This

satisfies condition 1.

Note thatw∗ strictly prefers f ∗ to µ′1(w∗) becausew∗ <W ′,w∗ is active in both

Propose stages, and f ∗ = µ1(w∗) , µ′1(w∗). Similarly, w∗ , µ0(f ∗) because µ′1 is

individually rational. Because w′ is rejected by f ∗ in favor of w∗ in the ≿w-

Propose stage, it follows that f ∗ strictly prefers w∗ to w′. Therefore, (w∗, f ∗)

is a blocking pair of µ′1. This satisfies condition 3.

This completes this case.

Because only w misreports, w∗ in each case has the same preferences. There-

fore, the conditions of lemma A.6 are met, a contradiction to the supposition that

µ′1 is the output of the ≿′w-Propose stage. This completes the proof.

Proof of Theorem 4: This proof has two parts. In the first, I show that µ′1(w) = f .
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In the second, I show that w is not active the µ′0-Propose stage.

Suppose (toward a contradiction) that µ′1(w) , f . I show that every worker

who proposes in the µ0-Propose stage weakly prefers µ1 to µ′1. This contradicts

the supposition that w strictly prefers µ′1 to µ1.

First, choose an arbitrary proposal order for the µ0-Propose stage such that

w only makes his first proposal if he is the only active worker. Use the notation

(w̃, f̃ ) to indicate that w̃ proposes to f̃ , and let (w1, f1), (w2, f2), . . . , (wn, fn) be the or-

der of proposals. By Proposition 2 the output of the Propose stage is independent

of the proposal order.

Second, I argue by induction that there is a proposal order for the µ′0-Propose

stage such that the first n proposals are (w1, f1), (w2, f2), . . . , (wn, fn). In the base

case, consider (w1, f1). There are two cases:

1. w1 , w: Then w1 or µ0(w1) is a proposal source in µ0. Thus w1 or µ0(w1) is a

proposal source in µ′0. Therefore w1 is active at the start of the µ′0-Propose

stage.

2. w1 = w: Then w is the only active worker at the start of the µ0-Propose

stage. Because µ′1(w) , f , this implies that w is active at some point in the

µ′0-Propose stage. Therefore, w is active at the start of the µ′0-Propose stage.

Therefore there is a proposal order such that (w1, f1) is the first proposal in the

µ′0-Propose stage.

For the inductive step, suppose that there is a proposal order such that (w1,

f1), (w2, f2), . . . , (wk−1, fk−1) are the first k − 1 proposals in the µ′0-Propose stage.

There are two cases:

1. wj , w for any j < k: Observe that there are weakly more rejections in the

µ′0-Propose stage. Therefore, the set of active agents is weakly larger in the

µ′0-Propose stage, with the possible exception of w. If wk = w, then w is the

only active worker in the µ0-Propose stage. Because µ′1(w) , f , this implies
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that w is active at some point in the µ′0-Propose stage. Therefore w must be

active at the kth step of the µ′0-Propose stage Therefore wk must be active at

the kth step of the µ′0-Propose stage

2. wj = w for some j < k: Observe that there are weakly more rejections in the

µ′0-Propose stage. Therefore, the set of active agents is weakly larger in the

µ′0-Propose stage becausew has been active at least once. Thereforewk must

be active at the kth step of the µ′0-Propose stage.

Therefore, w makes weakly more proposals in the µ′0-Propose stage, a contra-

diction to the supposition that w and f profitably misreport the initial match.

Therefore, µ′1(w) = f .

Suppose (toward a contradiction) that w is active in the Propose phase µ′0-

Propose stage. Let

w1 ≡ w,f1 ≡ µ′2(w1),w2 ≡ µ′0(f1), . . . , fn ≡ f

be the cycle in which w and f sit down in in the µ′0-Exchange stage.

Consider any wk in this cycle. If wk is active in the µ′0-Propose stage, then wk

proposes to fk in the µ′0-Propose stage because µ′1(wk) = µ′0(wk). Because µ′2(fk) =

wk, it follows that fk weakly prefers wk to µ′0(fk). Because fk rejects wk at some

point of the µ′0-Propose stage, it then follows that wk+1 is active in the µ′0-Propose

stage. By supposition, w is active in the µ′0-Propose stage.

Therefore, wn is active in the µ′0-Propose stage. Therefore, wn proposes to f

in the µ′0-Propose stage but f rejects wn. Because f strictly prefers µ′2(f ) to µ2(f ),

and weakly prefers µ2(f ) to being unmatched, it follows that f does not reject a

proposal from wn, a contradiction. Therefore, w is not active in the µ′0-Propose

stage.
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